
Emulator Performance Study

Dr. Mattias Holm
Terma

Shuttersveld 9
2316 XG Leiden
Netherlands

maho@terma.com

March 2, 2015

Abstract

This paper describes an internal study into emulator performance, focusing on the ESOC Emulator Suite 2.0, TSIM and
T-EMU 2.0. The study was done by applying both theory to estimate emulator performance based on different emulation
methods and experiments that where executed to validate themodel and to provide data for development of next generation
Terma Emulator, T-EMU 2.0.

1 Introduction
Micro-processor emulators are performance sensitive systems that are critical in today's on-board software development,
testing and deployment. During development, the use of emulators is critical in order to ensure that the software runs in
an environment with the same behaviour as the hardware (e.g. endianess, floating point behaviour, etc). When deploying
a spacecraft, an operational simulator is also deployed in primarily in order to train ground personnel on how to control
the spacecraft and to test operational procedures before executing them on the real satellite.

The different activities have different demands on performance and accuracy on the emulation. For example, in an
operational simulator, humans are in the loop, so high performance (faster than real-time) is important, while timing
accuracy can be relaxed. For software validation higher accuracy is often needed, while at the same time, performance
can be relaxed (within reason), at least in a fully virtual environment.

In order to get a better understanding of the performance of emulators, an internal study was carried out. This served
two purposes, firstly to be able to predict achievable performance of an emulator and secondly to have numbers for guiding
future developments. In the study the following emulators where examined: T-EMU 2.0[3], TSIM[2] and the ESOC
Emulator Suite 2.0[1].

Emulator performance can be measured in two primary ways. The direct approach is to measure the number of emu-
lated instructions executed per second for some test application. This figure is known as Instructions Per Second (IPS).
The IPS number is usually due to the volume of instructions expressed in MIPS1 although other denominations are com-
mon as well (eg. kIPS and GIPS). The IPS measurement is depending on the efficiency of the emulator and the host
machine running the emulator.

The second way to measure emulator performance is to compare the progress of simulated real-time (SRT) to wall-
clock time (WCT). When these numbers are compared, we get either S = tsrt/twct expressing speedup in times real-time
(TRT) or the reciprocal slowdown (times slower than real-time). The S value depends on the efficiency of the emulator,
the host machine and the clock frequency of the emulated target processor.

Measurements inMIPS are useful for comparing raw emulator performance between different emulators (e.g. TSIM vs
ESOC Emulator or different emulator versions). The second measurement S is useful for comparing actual performance
of an emulated system in real-world scenarios and takes into account the effect of optimisations such as idle loop detection.

The remainder of this paper goes into the detail of the methodology used for the performance study and the results
achieved during the study.

1Not to be confused with Dhrystone MIPS which is a measurement of the number of iterations through the Dhrystone program per second dividied
by 1757.

1

2 Methodology
The performance study was carried out in two phases. First a simplified theoretical model of an emulator was developed
in order to get an understanding of what performance can be expected from an emulator. This was followed by an exper-
imental study, which firstly attempted to validate the theoretical study, and secondly to quantify emulator performance in
both synthetic benchmarks and real-world scenarios.

The model consisted of couple of idealised instructions including mandatory overhead from these when applying
different emulation methods. The target instructions where broken down into numbers of implementing host instructions.
In addition to this a mapping of the ESOC Emulator Suite to this model was done. The experiments on the other hand
focused on executing firstly integer benchmarks primarily to validate the model. And secondly the integration of the
ESOC Emulator Suite 2.0 in a Software Validation Facility (SVF) already running TSIM and comparing the real-time
performance to each other.

2.1 Synthetic Benchmarks
In order understand the raw performance of especially the ESOC Emulator in different configurations, and to analyse the
design and evolution of T-EMU 2.0, Two different types of benchmarks were executed, firstly single instructions where
bench marked to validate the model, secondly the Dhrystone benchmark was executed, while measuring the emulated
MIPS (not to be confused with the Dhrystone MIPS figure).

2.2 Software Validation Facility Integration
In order to understand the behaviour of the ESOC Emulator in particular, it was integrated in a LEON3 based SVF, using
the TSIM API which was implemented as a wrapper on top of the ESOC Emulator APIs. In the SVF, speedup of the
emulated target was measured for different tests. Firstly, the boot-performance was measured (i.e. the time from power
on until the application software has been loaded and starts executing) and secondly the timing for TC/TM responses was
measured.

3 Model
This section describes a simplified version of the idealised emulator model. There are different types of interpreted emu-
lation methods, including decode-dispatch and threading. The different emulation methods described here can be found
described in more detail in [4].

The models estimate the instruction count of the different emulation methods including the overhead from the emulator
loop (whether threaded or not). A 3.5 GHz PC is used as reference with the assumption that it has a Cycles Per Instruction
(CPI) of one.

3.1 Decode Dispatch Loop
An interpreted decode-dispatch emulator consists of a main emulator loop, which executes a loop similar to the following:

Listing 1: Decode Dispatch Loop
whi le (! stopEmuLoop) {

i n s t r = mem[pc] ;
i n s t r F u n c = decode (i n s t r) ;
i n s t r F u n c (i n s t r) ;

}

As can be seen, the main loop fetches an instruction from emulated memory, decodes the instruction and then calls the
instruction function (this could also be done with a computed goto).

The decoding can be done in different ways, one way is to do this using a multilevel table matching the target processor
Instruction Set Architecture (ISA). Another way is a multi level switch statement and a third is to try to compress as much
as possible in a single table. For systems not using the single table approach (which may not be practical due to the ISA),
speed can be improved using a decode cache. A good estimate is that the decoding takes up 10-20 instructions.

An add instruction can be implemented as follows:

2

Listing 2: Decode Dispatch Instruction
void
add (u i n t 3 2 _ t i n s t)
{

i n t RA = e x t r a c t F i e l d (i n s t , r a S t a r t , r a B i t s) ;
i n t RB = e x t r a c t F i e l d (i n s t , r b S t a r t , r b B i t s) ;
i n t RC = e x t r a c t F i e l d (i n s t , r c S t a r t , r c B i t s) ;
r eg [RA] = r eg [RB] + r eg [RC] ;
PC = PC + 4 ;
TIME = TIME + ADD_CYCLES;

}

Here the extract field function effectively results in a shift and mask operation, while the updates of the PC and TIME
variables each results in a load, and addition and a store.

3.2 Threading
One approach to improve emulator performance is to apply a technique known as threading. In a threaded interpreter,
the main loop is eliminated and threaded through each instruction using computed jumps (this can be done either using
computed gotos or with tail-recursive calls). The best way to describe this is actually to illustrate it with an example using
computed gotos:

Listing 3: Threaded Emulator
add :

i n t RA = e x t r a c t F i e l d (i n s t , r a S t a r t , r a B i t s) ;
i n t RB = e x t r a c t F i e l d (i n s t , r b S t a r t , r b B i t s) ;
i n t RC = e x t r a c t F i e l d (i n s t , r c S t a r t , r c B i t s) ;
r eg [RA] = r eg [RB] + r eg [RC] ;
PC = PC + 4 ;
TIME = TIME + ADD_CYCLES;
i f (stopEmuLoop) goto exitEmuLoop ;
i n s t = mem[PC] ;
i n s t L a b e l = decode (i n s t) ;
goto * i n s t L a b e l ;
/ / . . .

The key point with the threaded approach is that the return from the instruction to the main interpreter loop is eliminated
resulting in the elimination of a branch. The mechanism illustrated is known as indirect threaded interpretation.

It is possible to apply additional optimisations to the threaded interpreter models. One such optimisation is to apply a
technique known as pre-decoding. The idea is to store already decoded instructions in a cache (or in the memory model
directly).

To get this done efficiently, an auxillary shadow program counter indexing the decoded memory data is introduced
called Thread ProgramCounter (TPC).When this has been donewe get target instructions that are implemented as follows:

Listing 4: Pre-Decoded Threaded Emulator
t ypede f s t r u c t {

unsigned op ;
by t e RA;
by t e RB;
by t e RC;

} d e c o d e d _ i n s t r _ t ;
/ / . . .
add :

i n t RA = decodedMem [TPC] .RA;
i n t RB = decodedMem [TPC] . RB;
i n t RC = decodedMem [TPC] . RC;

3

r eg [RA] = r eg [RB] + r eg [RC] ;
PC = PC + 4 ;
TIME = TIME + ADD_CYCLES;
i f (stopEmuLoop) goto exitEmuLoop ;
n ex t = decodedMem [TPC] . op ;
i n s t L a b e l = i n s t T a b l e (n ex t) ;
goto * i n s t L a b e l ;
/ / . . .

With the pre-decoding, decoded instructions will be less dense than the target ISA (resulting in RAM, cache, and
memory load costs). On the other hand the decoding that is done in the instruction table is just a lookup. This can in turn
be optimised a step further by eliminating the instruction address lookup by storing the instruction address in the decode
table instead.

These two pre-decoding methods are known as indirect pre-decoded threaded and direct pre-decoded threaded.

3.3 Modelled Values
Table 1 illustrates the cost for an add instruction in the emulator in instructions. The overhead is quantified in Table 2.
Table 3 illustrates the theoretical MIPS count that an emulator will achieve on a 3.5 GHz PC with a CPI of 1.

Table 1: Instruction Count for Add Instruction
Operation Mem Access Ops Total
extractField 0 2 2
Reg-Reg op 3 1 4
PC update 2 1 3
Time update 2 1 3
Total 7 5 12

Table 2: Instruction Count for Emulator Overhead
Operation Instructions
decode 10
fetch op 1
decode-dispatch extra 1

Table 3: Theoretical MIPS Values of an add instruction on a 3.5 GHz Host
Emulator Type MIPS (3.5 GHz)
Decode-dispatch 114
Indirect threaded 122
Direct pre-decoded threaded 210

3.4 ESOC Emulator Mapping
The ESOC Emulator does not directly fit into the classifications made in Sections 3.1 and 3.2. The ESOC Emulator
provides both the capabilities of a decode-dispatch interpreter and a threaded interpreter. It does indirect predecoding, but
does not save decoded operands which are instead unpacked as normal. The best way to describe the ESOC Emulator is
as indirect pre-decoded dispatch loop or indirect pre-decoded threaded.

In addition to the classification, the ESOC Emulator (when running on the x86 processor) utilise a Virtual Machine
(named VAC) in which the emulated target machine is executed (i.e. a VM in a VM). The maintenance of this VMs state
costs instructions and in the end performance. The overhead of this must be estimated. The cost of an add-instruction in
the ESOC emulator is illustrated in Table 4.

By applying the extra overhead on a single add instruction, we get 116.6 MIPS on a 3.5 GHz machine (compared to
166.6 MIPS without the extra overhead).

4

Table 4: Instruction Count For Add Instruction in the ESOC Emulator
Operation Mem Access Ops Total
extractField 2 2 4
Reg-Reg op 6 1 7
PC update 2 1 3
Time update 2 1 3
Total 12 5 17

4 Results
The following subsections detail the results of the experimental validation.

4.1 Synthetic Benchmarks
For the single instruction case, a special customised version of the ESOC Emulator was used that applied custom register
allocation when compiling the emulator core; effectively eliminating the VAC overhead. The results for these tests are
illustrated in Table 5.

Table 5: Theoretical and Experimental MIPS for Add Instructions
Config Theoretical Experimental
No VAC 166.6 MIPS 175.0 MIPS
With VAC 116.6 MIPS 100.8 MIPS

The Dhrystone benchmark was executed on different configurations of the ESOC Emulator and T-EMU 2.0 (the next
generation Terma Micro-processor emulator). The results for these tests are illustrated in 6. The tests included the ESOC
emulator in decode-dispatch and threaded mode and for the decode-dispatch mode, also with and without the MMU in the
system. For T-EMU 2.0, tests where carried out using the same application as for the ESOC emulator.

Table 6: Measured MIPS with Different Emulators and Configurations
Emulator MIPS
ESOC no-mmu dispatch 57.5 MIPS
ESOC no-mmu threaded 66.4 MIPS
ESOC mmu dispatch 25 MIPS
T-EMU 2.0 no-mmu 90.0 MIPS
T-EMU 2.0 mmu 90.0 MIPS
TSIM no-mmu 60 MIPS2

4.2 Software Validation Facility Integration
The boot performance is illustrated in Tables 7 and 8. The measured data include the wall-clock time for executing the
first 100 SRT-seconds of the booting system, and the WCT for the second 100 SRT-seconds of the just booted software.

Table 7: LEON3 SVF Boot Performance (Wall Clock Seconds)
Emulator 0-100 100-200
TSIM 92.4 35.0
ESOC Emu 47.5 12.04

Table 9 gives the average value for the time between sending a TC to the running OBSW and the delivery of the TM
response in both SRT and WCT for both SVF configurations.

5

Table 8: LEON3 SVF Boot Performance (Speedup)
Emulator 0-100 100-200
TSIM 1.08 TRT 2.86 TRT
ESOC Emu 2.10 TRT 8.30 TRT

Table 9: LEON3 SVF TC to TM Response Time
Emulator SRT WCT
TSIM 0.15165 115.0
ESOC Emu 0.15155 21.4

5 Discussion and Conclusions
We have defined a theoretical model predicting emulator performance that was also validated to be reasonably accurate by
test. This together with the other evaluation described here, led to principles that have guided the development of T-EMU
2.0. Which is shown here to be 40% faster than the ESOC Emulator (without MMU) and 260% faster when including the
MMU. The massive increase in the case of an MMU in the loop is due to the use of a highly efficient address translation
cache in T-EMU 2.0.

We have also shown that the choice of emulator can have a major impact on SVF performance. Although, while TSIM
can run faster than measured, the use of the AMBA emulation interface in this case results in significant slowdowns of the
emulation (the ESOC Emulator kept at least the RAM and ROM models inside the emulator). On one hand this enables
TSIM to be cycle-accurate as the AMBA-busses are simulated, on the other hand, this significantly slows down MMIO
and memory emulation.

There is also the issue of slower MMIO device lookups when the address decoders are outside the emulator core and
the custom address decoders are not written in an efficient way (this has been known in some circles as the I/O bottleneck).
This problem is however an artificial problem, created by the use of inefficient data structures used by the address decoders.
This has also been a driving factor in the T-EMU 2.0 development. T-EMU 2.0, which, although not quantified in this
paper, does not suffer from this problem.

Future work includes extending the benchmarks and testing T-EMU 2 in the SVF configuration and running the syn-
thetic benchmarks also on TSIM.

References
[1] SIMULUS. http://www.esa.int/Our_Activities/Operations/Ground_Systems_Engineering/SIMULUS.

[2] TSIM2 ERC32/LEON simulator. http://www.gaisler.com/index.php/products/simulators/tsim.

[3] Mattias Holm. The Terma Emulator Evolution. In Simulation & EGSE Facilities for Space Programmes, 2015.

[4] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes (The Morgan Kaufmann
Series in Computer Architecture and Design). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

6

