
Class: TN
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE
Rev: 1.1
Date: 2017-01-10
Approved by: Michela Alberti

PUBLIC

© Terma GmbH, Germany, 2016-2017. Proprietary and intellectual rights of Terma GmbH, Germany are involved in the subject-matter of this material and all manufacturing,
reproduction, use, disclosure and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the
recipient by accepting this material agrees that this material will not be used, copied or reproduced in whole or in part, nor its content (or any part thereof) revealed in any manner or
to any third party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

Page 1 of 8

T-EMU: SpaceWire Bus Modelling

Prepared

Alberto Ferrazzi
Software Engineer

Checked

Dan Søren Nielsen
QA Manager

Approved

Michela Alberti
General Manager

T-EMU: SpaceWire Bus Modelling
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

PUBLIC

Page 2 of 8

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

Record of Changes

Author Description Rev Date

Mattias Holm Fix typos in example code 1.1 2017-01-10

Alberto Ferrazzi Initial Version 1.0 2016-11-22

Table of Contents
1. Introduction .. 2
2. Interfaces ... 2
3. Limitations ... 4
4. Commands ... 4
5. Classes ... 4

5.1. SpwRouter ... 4
6. Attributes ... 4

6.1. Properties .. 4
6.2. Interfaces ... 5
6.3. Ports .. 5

7. Examples ... 5

1. Introduction
T-EMU provides support for SpaceWire based devices. It also provides helpful functions for RMAP
commands decoding. The bus model interfaces are available in: "temu-c/Bus/Spacewire.h". In addition to
the interfaces a simple SpaceWire Router model is provided.

Spacewire is a point to point bus. Two devices can be connected directly while multiple devices can be
connected through a Router. A SpaceWire Route receives a packet on a port and forward it to another,
where the destination device is connected.

Spacewire uses wormhole routing. The sender device provides the list of addresses (each address is an 8-
bit value) required to reach the destination. Each node in the middle is supposed to strip the first address
and use it to select the port used to forward the packet.

2. Interfaces
The interesting interfaces are defined in the temu-c/Bus/Spacewire.h header.

typedef enum {
 teSMT_Data = 1,
 teSMT_Err = 2,
 teSMT_Time = 3,
} temu_SpwPacketType;

typedef struct temu_SpwPacket {
 temu_SpwPacketType MsgType;
 temu_Buff PktData;

T-EMU: SpaceWire Bus Modelling
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

PUBLIC

Page 3 of 8

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

 uint8_t Flags;
} temu_SpwPacket;

typedef enum {
 teSPWLS_ErrorReset = 1,
 teSPWLS_Ready = 2,
 teSPWLS_Started = 3,
 teSPWLS_Connecting = 4,
 teSPWLS_Run = 5
} temu_SpwLinkState;

struct temu_SpwPortIface {
 void (*receive)(void *Device, void *Sender, temu_SpwPacket *Pkt);
 void (*signalLinkStateChange)(void* Device, temu_SpwLinkState LinkState);
 temu_SpwLinkState (*getOtherSideLinkState)(void* Device);
 void (*connect)(void *Device, temu_SpwPortIfaceRef Dest);
 void (*disconnect)(void *Device);
 uint64_t (*timeToSendPacketNs)(void* Device, uint64_t PacketLength);
};

While the SpaceWire protocol is character based, to have better performances T-EMU transfers full
messages with a single call on the port interface. Example of messages are a data packet, an RMAP packet
and a time code. Control characters like FCT (flow control) are abstracted away.

The SpaceWire packet structure is used to pass a packet between nodes. The MsgType field identifies if
the packet is a timecode, a complete data packet (ending with EOP) or an incomplete data packet (ending
with EEP). The PktData field contains the packet data or the time code value.

A T-EMU buffer is used to hold the data. This data structure has been implemented to handle SpaceWire
packets in a performant way. It allows to acquire a reference to a part of the original data so that a copy
of data is not required for each node due to wormhole routing stripping. It also free the memory used to
store the original message when no more references are active. This way, destination devices can maintain
the data as long as needed without coping it.

SpaceWire links are full-duplex. The SpaceWire link is modeled by simply having each device
implementing a port interface and holding a reference to other end port. This allows comunication in both
directions simultaneously.

SpaceWire devices often have several connections port. The SpwPortIface is meant to be implement for
each port a device intends to provide.

temu-c/Bus/Spacewire.h header also define functions to help decode RMAP packets:

Name Description

temu_spwRmapDecodePacket Provided a SpaceWire Rmap packet attempts to
decode it.

temu_spwRmapDecodeBuffer Provided a buffer containing a SpaceWire Rmap
packet attempts to decode it.

temu_spwRmapHeaderReplySize Returns the total packet-size required to reply to
the command.

T-EMU: SpaceWire Bus Modelling
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

PUBLIC

Page 4 of 8

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

Name Description

temu_spwRmapEncodeReadReplyHeaderForPacketEncodes the reply for a read command.

temu_spwRmapEncodeRmwHeaderForPacket Encodes the reply for a rmw command.

temu_spwRmapEncodeWriteReplyHeaderForPacketEncodes the reply for a write command.

temu_spwRmapCRCNextCode Provided the previous calculated crc and a the
current byte returns the next CRC value.

temu_spwRmapCRC Calculates the CRC over the specified data.

3. Limitations
The following deviations from real hardware are known to exist with this model:

• When two different devices try to access the same device the two accesses will happend simultaneously.
This should not be the case, the accesses should be sequential (the second device should wait for the bus
to be free). This issue will be solved in the future when bus-reservation feature will be implemented.

4. Commands
The following commands are provided:

Name Description

spw-connect Connect the two SpaceWire port interfaces
provided as parameters

spw-disconnect Disconnect the two SpaceWire port interfaces
provided as parameters

5. Classes
5.1. SpwRouter

The SpwRouter class provides a simple SpaceWire Router that lets the user configure the mapping between
the packet-address and the port that will be used to forward the packet. More advanced features like Group
Adaptive Routing or Packet Distribution are not implemented.

6. Attributes
6.1. Properties

Name Type Description

internal.linkState [32 x int32_t] Holds the link state of the ports

object.timeSource object Time source object (a cpu or
machine object)

ports [32 x iref] Connected SpaceWire devices

T-EMU: SpaceWire Bus Modelling
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

PUBLIC

Page 5 of 8

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

Name Type Description

routingTable [256 x uint8_t] Configure packet-address to
forwarding-port mapping

6.2. Interfaces
Name Type Description

SpwPortIface SpwPortIface Input spacewire ports interfaces

6.3. Ports
Prop Iface Description

- - -

7. Examples
This example shows how to create a simple SpaceWire Router and a Grspw2 device and connect them.

import BusModels
import TEMUGrspw2
object-create class=Grspw2 name=grspw0
object-create class=SpwRouter name=spwRouter
spw-connect port1=grspw0:SpwPortIface[0] port2=spwRouter:SpwPortIface[0]

The next example shows how to implement a simple SpaceWire device

#include <stdint.h>
#include <stdio.h>
#include <string.h>

#include "temu-c/Support/Objsys.h"
#include "temu-c/Support/Attributes.h"
#include "temu-c/Support/Logging.h"
#include "temu-c/Bus/Spacewire.h"

typedef struct {
 temu_Object Super;

 int TransmitterDataRate;
 temu_SpwLinkState LinkState;
 temu_SpwPortIfaceRef Uplink;
} SpwDevice;

void*
create(const char *Name,
 int Argc TEMU_UNUSED,
 const temu_CreateArg *Argv TEMU_UNUSED)
{

T-EMU: SpaceWire Bus Modelling
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

PUBLIC

Page 6 of 8

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

 void *Obj = malloc(sizeof(SpwDevice));
 memset(Obj, 0, sizeof(SpwDevice));

 printf("Creating Object '%s'\n", Name);

 return Obj;
}

void
destroy(void *Obj)
{
 free(Obj);
}

static void
spwDeviceChangeLinkState(SpwDevice *Device, temu_SpwLinkState LinkState)
{
 Device->LinkState = LinkState;
 if ((Device->Uplink.Iface != NULL) && (Device->Uplink.Obj != NULL)) {
 Device->Uplink.Iface->signalLinkStateChange(
 Device->Uplink.Obj, LinkState);
 }
}

///
// SpwPortIface 0 implementation
///

static void
spwPortIfaceReceive0(void *Obj, void *Sender, temu_SpwPacket *Pkt)
{
 // Handle packet received.
 SpwDevice *Dev = (SpwDevice*)(Obj);
 temu_logInfo(Dev, "Received SpaceWire packet");
}

static void
spwPortIfaceSignalLinkStateChange0(void *Obj, temu_SpwLinkState LinkState)
{
 // The other side notified us that its link state changed.
 SpwDevice *Dev = (SpwDevice*)(Obj);
 temu_logInfo(Dev, "Other side link state changed");

 // Depending on the other side link state change update this
 // device link state.
}

static temu_SpwLinkState
spwPortIfaceGetOtherSideLinkState0(void *Obj)

T-EMU: SpaceWire Bus Modelling
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

PUBLIC

Page 7 of 8

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

{
 // Other side request this device state.
 SpwDevice *Dev = (SpwDevice*)(Obj);
 return (temu_SpwLinkState)Dev->LinkState;
}

static void
spwPortIfaceConnect0(void *Obj, temu_SpwPortIfaceRef PortIf)
{
 SpwDevice *Dev = (SpwDevice*)(Obj);
 Dev->Uplink = PortIf;

 // When two ports are connected the device goes to ready state.
 spwDeviceChangeLinkState(Dev, teSPWLS_Ready);
}

static void
spwPortIfaceDisconnect0(void *Obj)
{
 SpwDevice *Dev = (SpwDevice*)(Obj);
 Dev->Uplink.Iface = NULL;
 Dev->Uplink.Obj = NULL;

 // When two ports are diconnected the device goes to error reset state.
 spwDeviceChangeLinkState(Dev, teSPWLS_ErrorReset);
}

static uint64_t
spwPortIfaceTimeToSendPacketNs0(void* Obj, uint64_t PacketSize)
{
 SpwDevice *Dev = (SpwDevice*)(Obj);
 // Return the time required to transmit the packet through this port.
 return PacketSize / Dev->TransmitterDataRate;
}

temu_SpwPortIface SpwPortIface0 = {
 spwPortIfaceReceive0,
 spwPortIfaceSignalLinkStateChange0,
 spwPortIfaceGetOtherSideLinkState0,
 spwPortIfaceConnect0,
 spwPortIfaceDisconnect0,
 spwPortIfaceTimeToSendPacketNs0
};

TEMU_PLUGIN_INIT
{
 temu_Class *Cls = temu_registerClass("SpwDevice", create, destroy);

 // Reference to the port interface of the other end.

T-EMU: SpaceWire Bus Modelling
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

PUBLIC

Page 8 of 8

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

 temu_addProperty(Cls, "Uplink",
 offsetof(SpwDevice, Uplink),
 teTY_IfaceRef,
 1, // Number of elements (1 = scalar)
 NULL, NULL,
 "Other end port interface");

 // Port interface.
 temu_addInterface(Cls, "SpwPortIface", "SpwPortIface", &SpwPortIface0,
 0, "SpaceWire port interface");
}

