Class: TN PUBLIC

Doc. no: TERMA/SPD/63/T-EMU/DEV/ @
SPACEWIRE
Rev: 1.1

Date: 2017-01-10
Approved by: Michela Alberti

T-EMU: SpaceWire Bus Modelling

-EMU

Prepared Checked

Alberto Ferrazzi Dan Sgren Nielsen
Software Engineer QA Manager
Approved

Michela Alberti
General Manager

© Terma GmbH, Germany, 2016-2017. Proprietary and intellectual rights of Terma GmbH, Germany are involved in the subject-matter of this material and all manufacturing,
reproduction, use, disclosure and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the
recipient by accepting this material agrees that this material will not be used, copied or reproduced in whole or in part, nor its content (or any part thereof) revealed in any manner or
to any third party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

Page1lof 8

T-EMU: SpaceWire Bus Modelling PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

Page 2 of 8
Record of Changes
Author Description Rev Date
Mattias Holm Fix typos in example code 11 2017-01-10
Alberto Ferrazzi Initial Version 1.0 2016-11-22
Table of Contents
O 1 10T (8 Tox 1T o TR 2
B 1 010 = =TT TRPRRTRRI 2
T I T a1 = (0 PR 4
0001110 016 TP 4
LT O 5= =TT 4
L S o 11V L SR 4
ST N g1 o0 | (- 4
L3 T 1] 1= =2 TR 4
STV 101 (= = o =S PTTTT 5
L TG T o 1 N 5
A T 1] 1S PP 5

1. Introduction

T-EMU provides support for SpaceWire based devices. It also provides helpful functions for RMAP
commands decoding. The bus model interfaces are available in: "temu-c/Bus/Spacewire.h". In addition to
the interfaces a simple SpaceWire Router model is provided.

Spacewire is a point to point bus. Two devices can be connected directly while multiple devices can be
connected through a Router. A SpaceWire Route receives a packet on a port and forward it to another,
where the destination device is connected.

Spacewire uses wormhole routing. The sender device provides the list of addresses (each addressis an 8-
bit value) required to reach the destination. Each node in the middle is supposed to strip the first address
and use it to select the port used to forward the packet.

2. Interfaces

The interesting interfaces are defined in thet enmu- ¢/ Bus/ Spacewi r e. h header.

typedef enum {
teSMI_Data = 1,
teSMI_Err = 2,
teSMI_Time = 3,

} temu_SpwPacket Type;

typedef struct tenmu_SpwPacket {
t emu_SpwPacket Type MsgType;
termu_Buf f Pkt Dat a;

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: SpaceWire Bus Modelling PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

Page 3 of 8

uint8 t Flags;
} temu_SpwPacket ;

t ypedef enum {
teSPW.S ErrorReset = 1,
t eSPW.S Ready = 2,
teSPWS Started = 3,
t eSPW.S Connecting = 4,
teSPW.S Run = 5

} temu_Spwli nkSt at e;

struct temu_SpwPortl|face {
void (*receive)(void *Device, void *Sender, tenmu_SpwPacket *Pkt);
voi d (*signal Li nkSt at eChange) (voi d* Device, tenmu_SpwlLi nkState LinkState);
temu_SpwlLi nkState (*get O her Si deLi nkSt at e) (voi d* Devi ce);
void (*connect)(void *Device, temu_SpwPort|faceRef Dest);
void (*di sconnect) (void *Device);
uint64 t (*ti meToSendPacket Ns) (voi d* Device, uint64_t PacketlLength);
1

While the SpaceWire protocol is character based, to have better performances T-EMU transfers full
messages with asingle call on the port interface. Example of messages are a data packet, an RMAP packet
and atime code. Control characterslike FCT (flow control) are abstracted away.

The SpaceWire packet structure is used to pass a packet between nodes. The MsgType field identifies if
the packet is atimecode, a compl ete data packet (ending with EOP) or an incomplete data packet (ending
with EEP). The PktData field contains the packet data or the time code value.

A T-EMU buffer is used to hold the data. This data structure has been implemented to handle SpaceWire
packets in a performant way. It allows to acquire a reference to a part of the original data so that a copy
of datais not required for each node due to wormhole routing stripping. It also free the memory used to
storethe original message when no more references are active. Thisway, destination devices can maintain
the data as long as needed without coping it.

SpaceWire links are full-duplex. The SpaceWire link is modeled by simply having each device
implementing a port interface and holding areference to other end port. This alows comunication in both
directions simultaneously.

SpaceWire devices often have several connections port. The SpwPortlface is meant to be implement for
each port adevice intends to provide.

t erru- ¢/ Bus/ Spacewi r e. h header also define functions to help decode RMAP packets:

Name Description

temu_spwRmapDecodePacket Provided a SpaceWire Rmap packet attempts to
decodeit.

temu_spwRmapDecodeBuffer Provided a buffer containing a SpaceWire Rmap
packet attempts to decode it.

temu_spwRmapHeaderReplySize Returns the total packet-size required to reply to
the command.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: SpaceWire Bus Modelling PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

Page 4 of 8

Name Description
temu_spwRmapEncodeReadRepl yHeaderForPacket Encodes the reply for aread command.
temu_spwRmapEncodeRmwH eaderForPacket Encodes the reply for armw command.
temu_spwRmapEncodeWriteReplyHeaderForPacketEncodes the reply for a write command.
temu_spwRmapCRCNextCode Provided the previous calculated crc and athe

current byte returns the next CRC value.
temu_spwRmapCRC Calculates the CRC over the specified data.

3. Limitations

The following deviations from real hardware are known to exist with this model:

» Whentwo different devicestry to access the same device the two accesses will happend simultaneously.
This should not be the case, the accesses should be sequential (the second device should wait for the bus
to be free). Thisissue will be solved in the future when bus-reservation feature will be implemented.

4. Commands

The following commands are provided:

Name Description

spw-connect Connect the two SpaceWire port interfaces
provided as parameters

spw-disconnect Disconnect the two SpaceWire port interfaces
provided as parameters

5. Classes
5.1. SpwRouter

The SpwRouter class providesasimple SpaceWire Router that |etsthe user configure the mapping between
the packet-address and the port that will be used to forward the packet. M ore advanced features like Group
Adaptive Routing or Packet Distribution are not implemented.

6. Attributes
6.1. Properties

Name Type Description

internal.linkState [32 x int32_t] Holdsthe link state of the ports

object.timeSource object Time source object (acpu or
machine object)

ports [32 x iref] Connected SpaceWire devices

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: SpaceWire Bus Modelling PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

Page 5 of 8
Name Type Description
routingTable [256 x uint8 t] Configure packet-address to
forwarding-port mapping

6.2. Interfaces

Name Type Description

SpwPortlface SpwPortlface Input spacewire ports interfaces
6.3. Ports

Prop Iface Description

7. Examples

This example shows how to create a simple SpaceWire Router and a Grspw?2 device and connect them.

i mport BusModel s

i mport TEMJG spw2

obj ect-create class=G spw2 nanme=gr spw0

obj ect-create class=SpwRout er name=spwRout er

spw connect port 1=grspw0: SpwPort | face[0] port2=spwRout er: SpwPort | f ace[0]

The next example shows how to implement a simple SpaceWire device

#i ncl ude <stdint. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>

#i ncl ude "tenu-c/ Support/ bj sys. h"

#i ncl ude "tenu-c/ Support/Attributes. h”
#i ncl ude "tenu-c/ Support/Loggi ng. h"

#i ncl ude "tenu-c/ Bus/ Spacew re. h"

typedef struct {
termu_QObj ect Super;

int TransmitterDataRate;

t emu_SpwlLi nkSt at e Li nkSt at e;

termu_SpwPort | faceRef Upli nk;
} SpwDevi ce;

voi d*
create(const char *Nane,
int Argc TEMJ_UNUSED,
const tenu_CreateArg *Argv TEMJ_UNUSED)

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: SpaceWire Bus Modelling PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

Page 6 of 8

void *bj = mall oc(sizeof (Spwbevice));
menset (Cbj, 0, sizeof (Spwbevice));

printf("Creating hject '%'\n", Nane);

return Qbj;
}

voi d
destroy(void *Ohj)
{
free(j);
}

static void
spwbDevi ceChangelLi nkSt at e(SpwDevi ce *Devi ce, tenu_SpwLi nkState LinkState)

{
Devi ce->Li nkState = Li nkSt at e;
if ((Device->Uplink.lface !'= NULL) && (Device->Uplink.Cbj !'= NULL)) {
Devi ce->Upl i nk. | face- >si gnhal Li nkSt at eChange(
Devi ce->Upl i nk. Gbj, LinkState);
}
}

PELETLILL i bbb bbb rrnng
/1l SpwPortlface O inplenmentation
PELETTELEE i bbb rrrng

static void
spwPort | faceRecei veO(void *Qbj, void *Sender, tenu_SpwPacket *Pkt)
{

/1 Handl e packet received.

SpwhDevi ce *Dev = (SpwbDevi ce*) (Obj);

temu_| ogl nfo(Dev, "Received SpaceWre packet");

}

static void
spwPor t | f aceSi gnal Li nkSt at eChangeO(void *Cbj, tenmu_SpwLi nkState LinkState)
{

/1 The other side notified us that its |ink state changed.

SpwhDevi ce *Dev = (SpwbDevi ce*) (Obj);

temu | ogl nfo(Dev, "Qther side |ink state changed");

/1 Depending on the other side link state change update this
/1 device link state.

}

static temu_SpwlLi nkState
spwPort | faceGet O her Si deLi nkSt at eO(voi d *Obj)

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: SpaceWire Bus Modelling PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/DEV/
SPACEWIRE, Rev: 1.1

Page 7 of 8

{

/1 Other side request this device state.

SpwhDevi ce *Dev = (SpwDevi ce*) (Obj);

return (temu_SpwlLi nkSt at e) Dev->Li nkSt at e;
}

static void
spwPort | faceConnect O(void *Cbj, temu_ SpwPortlfaceRef Portlf)
{

SpwhDevi ce *Dev = (SpwbDevi ce*) (Obj);

Dev->Uplink = Portlf;

/1 When two ports are connected the device goes to ready state.
spwbDevi ceChangelLi nkSt at e(Dev, teSPW.S Ready);

}

static void

spwPort | faceDi sconnect O(void *Chj)

{
SpwhDevi ce *Dev = (SpwbDevi ce*) (Obj);
Dev->Uplink.|face = NULL;
Dev->Upl i nk. Cbj = NULL,;

/1 When two ports are diconnected the device goes to error reset state.
spwbDevi ceChangelLi nkSt at e(Dev, teSPW.S Error Reset);

}

static uint64_t

spwPort | faceTi neToSendPacket NsO(voi d* Cbj, uint64_t PacketSize)

{
SpwhDevi ce *Dev = (SpwbDevi ce*) (Obj);
/! Return the tine required to transmt the packet through this port.
return PacketSize / Dev->Transm tter Dat aRat e;

}

temu_SpwPort | face SpwPortlface0 = {
spwPor t | f aceRecei veO,
spwPor t | f aceSi gnal Li nkSt at eChange0,
spwPort | faceGet O her Si deLi nkSt at €0,
spwPort | f aceConnect 0,
spwPor t | faceDi sconnect 0,
spwPor t | faceTi neToSendPacket NsO

i
TEMJ PLUGN INIT
{

temu_Class *Cls = tenu_regi sterC ass("SpwbDevi ce", create, destroy);

/'l Reference to the port interface of the other end.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: SpaceWire Bus Modelling
Doc. no: TERMA/SPD/63/T-EMU/DEV/

SPACEWIRE, Rev: 1.1

PUBLIC @

Page 8 of 8

temu_addProperty(d s, "Uplink",

/1 Port

of f set of (SpwDevi ce, Uplink),
teTY_ I faceRef,

1, // Nunber of elenents (1 = scalar)
NULL, NULL,
"Qther end port interface");

i nterface.

temu_addl nterface(C's, "SpwPortlface", "SpwPortlface", &SpwPortlfaceO,

0, "SpaceWre port interface");

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC

