
Class: TN
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM
Rev: 1.0
Date: 2015-03-01
Approved by: Michela Alberti

PUBLIC

© Terma GmbH, Germany, 2015. Proprietary and intellectual rights of Terma GmbH, Germany are involved in the subject-matter of this material and all manufacturing, reproduction,
use, disclosure and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by
accepting this material agrees that this material will not be used, copied or reproduced in whole or in part, nor its content (or any part thereof) revealed in any manner or to any third
party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

Page 1 of 25

T-EMU: User Manual

Prepared

Mattias Holm
Technical Project Manager

Checked

Dan Søren Nielsen
QA Manager

Approved

Michela Alberti
Director of Operations

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 2 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

Record of Changes

Author Description Rev Date

Mattias Holm Initial Version 1.0 2015-03-01

Mattias Holm Clarify whole document and
add multicore discussion

1.1 2015-07-27

Table of Contents
1. Introduction .. 3
2. Documentation Overview .. 3

2.1. Target Manuals .. 3
2.2. Model Manuals .. 4

3. Getting Started ... 4
3.1. Installation ... 4
3.2. License Files ... 5
3.3. Running the Emulator .. 5
3.4. Creating a New Machine ... 5
3.5. Loading and Running Software .. 6

4. Command Line Interface .. 6
4.1. Command Line Interface Options ... 7
4.2. Command Syntax .. 7
4.3. Help Command ... 7
4.4. Commands .. 7

5. Libraries ... 9
5.1. Deprecation Policy ... 10
5.2. The Object System ... 10
5.3. Object Graph and Interface Properties ... 12
5.4. Object System Functions .. 12
5.5. Interfaces ... 13

6. Processor Emulation ... 17
6.1. Running a CPU ... 17
6.2. Event System ... 18
6.3. Multi-Core Emulation and Events ... 18

7. Memory Emulation ... 19
7.1. Memory Spaces ... 20
7.2. Address Translation Cache ... 20

8. Checkpointing .. 20
8.1. JSON Caveats .. 21

9. Examples .. 21
9.1. Quick CPU Construction Using JSON Files .. 21
9.2. Command Line CPU Construction .. 22
9.3. Programmatic CPU Construction .. 23

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 3 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

1. Introduction
This document is the T-EMU (Terma Emulator) Software Users Manual. It describes the fundamental
concepts and general usage of the T-EMU libraries and the command line interface.

T-EMU is a microprocessor emulator that supports the SPARCv8 processors ERC32, LEON2, LEON3
and LEON4. The emulator can emulate multi-core processors.

T-EMU is a full system emulator, meaning that it is capable of emulating (multi-core) microprocessors,
memory and peripherals. Different devices are written as plugins, meaning that the system supports both
pluggable CPU, memory and device modules. In-fact, systems are constructed by connecting different
modules together, meaning that there is no hard-wiring to any special memory layout or on-chip devices.

To give an example, to construct a LEON2 processor, one would first create and then connect the CPU
core, ROM, RAM and LEON2 SoC components.

Figure 1. Layers of the Terma Emulator

There are two user interfaces for T-EMU, the Command Line Interface (CLI) and the libraries (API). The
CLI offers an interactive tool for running the emulator by itself and with its own models, while the API
allows the user to integrate the emulator with other simulators.

2. Documentation Overview
This document is the software users manual. It gives a high level overview of the system. However, as T-
EMU is modular, this manual does not document everything. The details are described in different target,
model and API manuals. In general, the target and model manuals document the properties and interfaces
these systems implement. They are however not tutorials and those documents are not intended to help
you get started.

2.1. Target Manuals
Target manuals describe the usage of the processor emulators. There is one target guide per supported
architecture (currently this include only the SPARCv8). Note that a CPU core does not contain any I/O
models.

Table 1. T-EMU Target Manuals

Document Description

SPARCv8 Target Manual Manual for all the SPARC CPU cores

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 4 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

2.2. Model Manuals
Each implemented I/O model has a manual describing the usage of the model, how to configure the model,
and any known limitations of the model. The models include not only device models, but also bus models.

The following table lists some of the manuals.

Table 2. T-EMU Model Manuals

Document Note

Modelling Guide How to write device models

GPIO Bus Model Manual Manual for the built in GPIO bus model

UART Model Manual Manual for the built in UART bus model

AMBA Bus Model Manual Manual for the built in AMBA bus model

MEC Device Model Manual Manual for the ERC32 memory controller

LEON2 Device Model Manual Manual for the LEON2 on-chip devices

GRLIB GpTimer Device Model Manual GRLIB manual

GRLIB IrqMp Device Model Manual GRLIB manual

GRLIB AhbCtrl Device Model Manual GRLIB manual

GRLIB ApbCtrl Device Model Manual GRLIB manual

GRLIB AhbUart Device Model Manual GRLIB manual

GRLIB FtmCtrl Device Model Manual GRLIB manual

3. Getting Started

3.1. Installation
To install T-EMU, the best approach is to use the RPM or DEB files. The latest versions can be downloaded
from http://t-emu.terma.com/ .

The following table illustrates which packages should be used on which operating system. Normally
generic packages are available. For some older systems specific packages may be available.

Table 3. Installation Package Suggestions

OS Package Type

CentOS .rpm

Debian .deb

RedHat Enterprise Linux (RHEL) .rpm

Suse Linux for Enterprises (SLES) .rpm

Ubuntu .deb

http://t-emu.terma.com/

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 5 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

OS Package Type

Others .tar.bz2

The following commands can be used to install the different types of packages:

Install RPM
$ rpm -ivh t-emu-2.0.0-generic-Linux-x86_64.rpm

Install DEB
$ dpkg -i t-emu-2.0.0-generic-Linux-x86_64.deb

Install Tarball (.tar.bz2)
$ bunzip2 t-emu-2.0.0-generic-Linux-x86_64.tar.bz2
$ tar xvf t-emu-2.0.0-generic-Linux-x86_64.tar

By default, the packages install T-EMU in /opt/temu/x.y.z. The packages have also been created
and bundled with all the normal dependencies they need. This include the standard C++ libraries, so there
should be no problem to install and run the emulator on any Linux system. Note that testing is normally
done on stable Debian (currently Jessie/8.0), RHEL7 and SLES11.

T-EMU 2.0 consist of a set of libraries and a command line tool. The libraries are normally installed in /
opt/temu/2.0.0/lib and the tools in /opt/temu/2.0.0/bin/. The binaries and libraries have
been liked with the RPATH option, so there is no need to set LD_LIBRARY_PATH.

There are also packages for a build which has asserts enabled. Asserts have a performance penalty,
which at times can be heavy. Therefore, assert builds are opt-in. These packages installs under: /opt/
temu/2.0.0+asserts/

3.2. License Files
T-EMU will check your computer for a valid license file.

By default, T-EMU will look for a license file in the following locations:

./temu-license.json
~/.config/temu/license.json
${TEMU_LICENSE_FILE}

See http://t-emu.terma.com/ for more information on licenses. Note that you must have a valid license to
run T-EMU.

3.3. Running the Emulator
To start the command line interface, simply run /opt/temu/2.0.0/bin/temu or /opt/
temu/2.0.0+asserts/bin/temu. The command line interface exists to run the emulator in stand
alone mode.

3.4. Creating a New Machine
When T-EMU is running it will normally display the t-emu> prompt. This is the command prompt.

http://t-emu.terma.com/

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 6 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

To create a new machine, it is possible to use one of the bundled CPU configurations in /opt/
temu/2.0.0/share/temu/sysconfig/. Common configurations that instantiate different types
of systems are available. The command line scripts can be executed using the exec command. This can
be done as illustrated in the following examples:

Create a LEON2 System.

t-emu> exec /opt/temu/2.0.0/share/temu/sysconfig/leon2.temu

Create a Dual Core LEON3 System.

t-emu> exec /opt/temu/2.0.0/share/temu/sysconfig/leon3-dual-core.temu

3.5. Loading and Running Software
When a system has been created, it is time to load and run software in the emulator. The example here
assumes that the system was created as in the previous example. To load software which may be in ELF
or SREC format the load-command can be used.

Note

When running application software directly (as in contrast to have it loaded by boot software),
the user needs to ensure that assumptions made by the application software about the
environment provided by the boot software are valid. On the SPARC, this implies in many
cases that the stack and frame pointer are initialised to point out the end of RAM. But some
systems (e.g. Linux) assume that also timer registers are initialised.

Execution of software in a single core system can be done by the run and step commands. The run-
command runs the software for a given time (either cycles or seconds), while the step-command single
steps the software instruction by instruction.

Load and Run Software Image.

t-emu> load obj=cpu0 file=rtems-hello.elf
info: cpu0 : loading section 1/1 0x40000000 - 0x4001ec20 pa = 0x40000000
t-emu> set-reg cpu=cpu0 reg="%fp" value=0x407ffff0
t-emu> set-reg cpu=cpu0 reg="%sp" value=0x407fff00
t-emu> run cpu=cpu0 pc=0x40000000 time=10.0

Note

It is assumed that the user have access to application software and / or cross compilers and
is familiar with how to use these tools.

4. Command Line Interface
The command line interface is easy to use and provides built in help for different commands. To start the
command line tool do the following (assuming you are running bash).

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 7 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

Set the PATH to include the temu command line application
$ PATH=/opt/temu/bin:$PATH

Start T-EMU
$ temu
no such file: '~/.config/temu/init'
no such file: './temu-init'
t-emu>

As can be seen above, the command line tool complains about two missing files. These are nothing to
bother about at the moment. But the files are used to automatically run a set of commands when you start
the temu tool.

It is possible to get a list of commands by typing help. Help for an individual command (including lists
of arguments the command takes) can be produced by typing help CMDNAME.

4.1. Command Line Interface Options
The command line interface support the execution of non-interactive sessions via the --run-commands
flag.

--run-commands
[filename]

Run the temu command-script in the given file in non-interactive
mode. You can provide this option multiple times to execute
multiple scripts in sequence. When the last script finishes, the
emulator will quit.

4.2. Command Syntax
Normally commands are named by a noun-verb format (but there are abbreviations as well). Commands
take either a set of named arguments, but some (like the help command) also take positional arguments. In
the named format, each argument is separated by a space, and defined using key-value pairs as e.g. help
command=memory-assemble.

4.3. Help Command
Each command is self-documenting, typing help will show a list of available commands. Typing help
command=memory-assemble will show the detailed help for the memory-assemble command,
including all arguments and their types.

4.4. Commands
This section list some of the commands provided in the CLI. A full list can be generated by running the
help command.

4.4.1. Checkpointing Commands

There are two commands for working with checkpoints, the save and restore command.

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 8 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

checkpoint-restore This command restores a serialised checkpoint from a file. The read file
should be a JSON file written by the save command.

checkpoint-save The save function writes a checkpoint in JSON format to disk. Memory
content is typically dumped as raw data in a binary blob (in an auxiliary
file). The endianess of this blob is for RAM and ROM contents in the
standard models is in host order where the unit size is the word size of
the target. For the SPARCv8 target on an x86-64 host this means that
the data is stored as sequence of little endian 32-bit words.

4.4.2. Memory Commands

memory-assemble This command assembles a string into memory.

memory-disassemble This command disassembles memory contents. As assemblers are target
dependent the command takes a CPU object as a parameter.

memory-load Load executable file (srec or elf). The Command automatically detects
the format of the file by both extension and binary analysis.

memory-read Read memory and write it to the console.

memory-write Modify memory content.

memory-map Map object to memory space. The command assigns an object to an
address range in the memory space.

4.4.3. Object Commands

When dealing with the emulator object system in the CLI, there are a number of commands that are useful.
These include the following.

object-create Creates an object, the command takes two or three parameters. The class
parameter indicates the class of the object to be created, name indicates the
object name (this name should be unique) and the third optional parameter
args allows you to list a number of arguments formatted as name:value pairs
in a comma separated list. The arguments are class specific, consult the class
documentation on the allowed arguments.

Example:

object-create class=Leon3 name=cpu0 args=cpuid:0

object-connect Connect two objects together. The command connects an object reference
property to an interface provided by another object. The command takes
two parameters, parameter a is the property formed as objname.propname,
parameter b is the interface reference that the property should refer to, this is
formed as objname:ifacename.

Example:

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 9 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

connect a=cpu0.memAccess b=cpu0:MmuMemAccessIface
connect a=cpu0.memAccessL2 b=mem0:MemAccessIface

object-info This command prints the properties in an object.

object-list List the names of all objects created with object-create.

object-prop-write In order to assign property values using the property read and write
mechanism this command provides that functionality. Depending on the
model, a write may have side-effects (by invoking a write handler), side-
effects are documented in the model manuals.

4.4.4. Plugin Commands

There are several commands in the CLI that helps you deal with and to load plugins. All of these commands
have the prefix "plugin-".

plugin-append-path Add path to plugin search paths

plugin-load Load a plugin

plugin-remove-path Remove path from plugin search path

plugin-show-paths Print the search paths for plugins

plugin-unload Unload a plugin

4.4.5. Other Commands

cpu-run Run or step the emulated processor

script-run Run python script (experimental)

temu-quit Quit T-EMU

temu-help Show help

temu-version Show version number

5. Libraries
The principal library is libTEMUSupport.so. Normally, you never need to directly link to any other
library. Remaining libraries which implement CPUs and models, are loaded either in the command line
interface by using the plugin-load or its alias import, or by int temu_loadPlugin(const
char *Path) which is defined in temu-c/Support/Objsys.h.

To use the emulator as a library, simply link to libTEMUSupport.so and initialise the library with
temu_initSupportLib(). The function will among other things ensure that there is a valid license

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 10 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

file for you machine. In case there is no valid license file available, the function will terminate your
application.

#include "temu-c/Support/Init.h"

int
main(int argc, const char *argv[argc])
{
 temu_initSupportLib(); // Initialise the T-EMU library
 return 0;
}

Warning

Temu_initSupportLib() will terminate your application if there is no valid license file
on the system.

5.1. Deprecation Policy
T-EMU versions are numbered as Major#.Minor#.Patch#. I.e. 2.0.1 is a bug fix for major version 2, minor
version 0.

This policy is in effect starting with T-EMU 2.0.0. The policy will not change unless the major version
is incremented.

Patch version increments are for bugfixes and they will be ABI compatible with previous releases of the
same major-minor release (you will not need to recompile your models for them to remain functioning).

Minor version increments will remain source level API compatible, but may deprecate functionality and
APIs. Deprecated APIs will be marked as such with GCC / Clang deprecation attributes and noted as
deprecated in the release notes. Recompilation of user defined models is recommended as ABI may break
(e.g. extra functions at the end of interfaces). Minor versions typically add non-invasive features (more
models, additional simple API functionality etc).

Major version increments will remove deprecated functions and APIs. Although, models written using the
C-API should in general remain compatible, however, no 100-percent-guarantee is made for this. Major
versions can add substantial new features.

5.2. The Object System
T-EMU provides a light weight object system that all built in models are written in. The object system
exist to provide a C API in which it is possible to define classes and create objects that support reflection /
introspection. Conceptually this is similar to GOBJECT, but the T-EMU object system is more tailored for
the needs of an emulator and a lot simpler. There is also some correspondence to SMP2, but the interfaces
are plain C which is needed in order to interface to the object system from the emulator core.

The key features of the object system are the following:

• Standardised way for defining classes and models in plain C.

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 11 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

• Ability to introspect models, even though they are written in C or C++.

• Automatic save and restore of state

• Access to object properties by name using scripts

• Standard way for defining interfaces (such as serial port interfaces etc)

• Easy to wrap in order to be able to write models in other languages (e.g. Python)

The object system accomplishes this by providing the following:

Class Blueprint for objects, classes are created, registering properties and interfaces. It is
also possible to define external classes, these are special classes which describe object
created outside the emulator.

Object An instantiated class. Normally the T-EMU object system takes care of instantiation,
however externally created objects can also be registered with the object system (in
order to have scripts build the object graph with external classes).

Property A named data member of a class (i.e. a field or instance variable). A property is
accessible by name (e.g. using strings) and will be automatically serialised by the
object system if needed. The system supports all basic fixed with integer types (from
<stdint.h>), pointer sized integers (i.e. uintptr_t and intptr_t), floats,
doubles and references to objects and interfaces.

Interface A collection of function pointers allowing classes to provide different behaviour for a
standardised interface. Similar to an interface in Java or an abstract class in C++. In T-
EMU this is implemented as structs of function pointers that are registered to a class.

When setting up a simulator based on T-EMU, the general approach is the following:

1. Create all the needed classes (e.g. load plugins)

2. Create all objects for the system (e.g. CPUs, ROM, RAM, MMIO models etc)

3. Connect objects (build the object graph)

4. Load on-board software in to RAM or ROM

5. Run the emulator

It is possible to query a class or object for properties and interfaces at runtime by specifying the property
or interface name as a string.

For example there is a CPU interface that is common to all CPU models, this contain procedures for
accessing registers. In addition, there is a SPARC interface which provides SPARC specific procedures
(e.g. accessing windowed registers).

The most important core interfaces are the following:

• MemAccessIface

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 12 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

• MemoryIface

• CpuIface

• EventIface

An interface can be queried using the temu_getInterface function. This function takes an object pointer as
first argument and the interface name as second. For example, temu_getInterface(cpu, "MemAccessIface")
will return the pointer to the memory access interface structure provided by the CPU object. You need to
cast the interface pointer to the correct type. The type mappings are provided in the model manuals.

5.3. Object Graph and Interface Properties
The objects created in the object system are connected together by linking interface properties to actual
interfaces. That is if an object A has an interface property, this interface property can refer to an interface
implemented by some other object B. Under the hood this is a pointer pair with an object pointer and
an interface pointer, the interface pointer is a pointer to the struct of function pointers implementing the
relevant interface.

5.4. Object System Functions
This section lists the most important object system functions. The full documentation is in Doxygen based
documentation, this is just a quick way to have an overview.

Table 4. T-EMU Object System Functions

Function Description

temu_getValue() Get property without side-effects

temu_readValue() Get property by calling the read function

temu_setValue() Set property without side-effects

temu_writeValue() Set property by calling the write function

temu_registerClass() Create a new class

temu_registerExternalClass() Create a new external class

temu_addProperty() Add property to class

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 13 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

Function Description

temu_addInterface() Add interface to class

temu_getInterface() Get interface pointer by name

temu_objsysClear() Delete all objects and classes

temu_createObject() Create a new object from an internal class

temu_addObject() Register an externally created object

temu_disposeObject() Delete object

temu_addNamedFunction() Add a named function pointer

temu_classForName() Get a class object by name

temu_classForObject() Get the class object for an object

temu_objectForName() Get a named object

temu_nameForObject() Get the name for the given object

temu_loadPlugin() Load a T-EMU plugin

temu_connect() Connect an interface property to an interface

temu_serialiseJSON() Save the state of the emulator

temu_deserialiseJSON() Restore the state of the emulator

temu_checkSanity() Look for unconnected interface properties

5.5. Interfaces
Interfaces are structs populated with function pointers. You can query an interface by name for a given
object using temu_getInterface().

5.5.1. Object Interface

The object interface provides a way to add support functions for the object system, for example custom
serialise and deserialise functions, and custom sanity checkers for a class.

typedef struct {
 void (*serialise)(void *Obj, const char *BaseName, void *Ctxt);
 void (*deserialise)(void *Obj, const char *BaseName, void *Ctxt);
 int (*checkSanity)(void *Obj, int Report);
} temu_ObjectIface;

5.5.2. Memory Access Interface

The memory access interface defines the interface used by objects connected to the emulated memory
system. The memory accesses are invoked by a CPU and can be either fetch, read or write operations.

typedef struct temu_MemTransaction {
 uint64_t Va; //!< Virtual address
 uint64_t Pa; //!< Physical address
 uint64_t Value; //!< Resulting value (or written value)

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 14 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

 //! 2-log of the transaction size.
 uint8_t Size;

 uint64_t Offset; //!< Offset from model base address
 void *Initiator; //!< Initiator of the transaction
 void *Page; //!< Page pointer (for caching)
 uint64_t Cycles; //!< Cycle cost for memory access
} temu_MemTransaction;

// Exposed to the emulator core by a memory object.
typedef struct temu_MemAccessIface {
 void (*fetch)(void *Obj, temu_MemTransaction *Mt);
 void (*read)(void *Obj, temu_MemTransaction *Mt);
 void (*write)(void *Obj, temu_MemTransaction *Mt);
} temu_MemAccessIface;

5.5.3. Memory Interface

The memory interface is a common interface for memory storage devices. It provides procedures for
writing and reading larger blocks of memory.

typedef struct temu_MemoryIface {
 void (*readBytes)(void *Obj,
 void *Dest, uint64_t Offs, uint32_t Size,
 int Swap);
 void (*writeBytes)(void *Obj,
 uint64_t Offs, uint32_t Size, void *Src,
 int Swap);
} temu_MemoryIface;

5.5.4. CPU Interface

The CPU interface provides a way to run processor cores and to access CPU state such as registers and
the program counter.

typedef struct temu_CpuIface {
 void (*reset)(void *Cpu, int ResetType);
 uint64_t (*run)(void *Cpu, uint64_t Cycles);
 uint64_t (*step)(void *Cpu, uint64_t Steps);

 void __attribute__((noreturn))
 (*raiseTrap)(void *Obj, int Trap);

 void (*enterIdleMode)(void *Obj);

 void __attribute__((noreturn))
 (*exitEmuCore)(void *Cpu, temu_CpuExitReason Reason);

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 15 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

 uint64_t (*getFreq)(void *Cpu);
 temu_CpuState (*getState)(void *Cpu);
 void (*setPc)(void *Cpu,
 uint64_t Pc);
 uint64_t (*getPc)(void *Cpu);
 void (*setGpr)(void *Cpu,
 int Reg,
 uint64_t Value);
 uint64_t (*getGpr)(void *Cpu,
 unsigned Reg);
 void (*setFpr32)(void *Cpu,
 unsigned Reg,
 uint32_t Value);
 uint32_t (*getFpr32)(void *Cpu,
 unsigned Reg);
 void (*setFpr64)(void *Cpu,
 unsigned Reg,
 uint64_t Value);
 uint64_t (*getFpr64)(void *Cpu,
 unsigned Reg);
 uint64_t (*getSpr)(void *Cpu,
 unsigned Reg);
 int (*getRegId)(void *Cpu,
 const char *RegName);
 uint32_t (*assemble)(void *Cpu,
 const char *AsmStr);
 const char* (*disassemble)(void *Cpu,
 uint32_t Instr);
 void (*enableTraps)(void *Cpu);
 void (*disableTraps)(void *Cpu);
 void (*invalidateAtc)(void *Obj,
 uint64_t Addr,
 uint64_t Pages,
 uint32_t Flags);
} temu_CpuIface;

5.5.5. Event Interface

The event interface is used to expose an event queue provider and provides a common interface for pushing
timed events on the given queue. The event interface is typically implemented by a CPU object, but is also
provided by the machine objects which are essentially CPU schedulers. The sender parameter should be
a pointer to the object that is posting the event (e.g. a timer object).

Normally, the CPU queues are based on cycles, while the machine object queue uses nanoseconds as event
time.

In order to be able to post events using nanoseconds as unit, the event routines takes a flag parameter and
the TEMU_EVENT_NS can be ored with other flags in order to specify events in nano-seconds instead.
When posting events to a CPU, nano-second events are converted to cycles, which means that you do not

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 16 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

have NS accuracy of the events, but accuracy is a function of the clock frequency. I.e. for a 100 MHz CPU,
the accuracy is 10 ns, while a 50 MHz CPU has an event posting accuracy of 20 ns.

Another flag option is the TEMU_EVENT_SYNC, which means that the event will be synchronised, such
an event must be posted in at least the next time-quanta. And it will end up in the event queue of the
machine object (if one exists). If a synchronised event is posted, with a triggering time in the current time
quanta, the post fails with an error noted in the log.

In the case synchronised events are used, the machine scheduler will adjust its quanta length to ensure
that CPUs do execute longer than needed. Note that synchronised events are executed after a CPU has
returned, potentially executing non-synchronised events.

The event system supports three types of events, there are stacked events on the current CPU, these can
be posted by an event handler or MMIO in order to execute an event after the current instruction finishes.

Events are prioritised as follows:

• Stacked events (in LIFO order).

• Normal timer events

• Synchronised events

That means that sync events will not be executed until all the stacked events and the normal timer events
have been executed.

An invariant is that when an emulator core returns, there should be no pending stacked or normal events
to be triggered at the current time.

typedef struct {
 void (*stackPostEvent)(void *Obj,
 void (*Ev)(void *, void *),
 void *Sender, void *Data, uint32_t Flags);

 void (*postDeltaEvent)(void *Obj,
 void (*Ev)(void *, void *),
 void *Sender, void *Data,
 int64_t Cycles, uint32_t Flags);

 void (*postAbsoluteEvent)(void *Obj,
 void (*Ev)(void *, void *),
 void *Sender, void *Data,
 int64_t Cycles, uint32_t Flags);
 int64_t (*getEventDeltaTime)(void *Obj,
 void (*Ev)(void *, void *),
 void *Sender);
 int64_t (*getEventAbsoluteTime)(void *Obj,
 void (*Ev)(void *, void *),
 void *Sender);
 void (*descheduleEvent)(void *Obj,
 void (*Ev)(void *, void *),

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 17 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

 void *Sender, uint32_t Flags);
} temu_EventIface;

6. Processor Emulation
The processor emulation capability in T-EMU is based on an instruction level simulation engine powered
by LLVM. At present the processor emulation is interpreted, but does reach close to 100 MIPS (Millions
of emulated Instructions Per wall-clock Second) on modern hardware.

The processor models provide static instruction timing which is useful in order to predict performance
in certain cases. Timing does not take pipeline dependencies into account, so there is no simulation of
branch prediction, pipeline stalls or superscalar execution. It is possible to insert user provided cache
models between the processor core and memory system such models can add more timing accuracy to the
emulation at the expense of performance.

6.1. Running a CPU
For a simulator it is important to understand the flow and state transitions of a CPU core and when it
terminates and the distinction between stepping and running.

6.1.1. CPU States

A CPU can be in three different states:

• Nominal

• Idling

• Halted

The nominal state indicates that the CPU is executing instructions.

Idling indicates that the CPU is not executing instructions but is advancing the CPU cycle counter and
event queue. Idle mode is exited when IRQs are raised or the CPU is reset. Idle mode normally indicates
either an idle loop (unconditional branch to itself) or powerdown mode. In both cases, the CPU will simply
forward time to the next event (or if no events are pending return from the core).

Halted mode indicates that the CPU is halted as would happend when a critical error is detected, on the
SPARC the halted state corresponds to the SPARC error mode. When entering halted state the CPU core
will return and the CPU will remain in halted state until it is reset. It is possible to run a halted core to
advance time and execute events (e.g. if there are death event handlers or watchdogs that should reset
the system).

6.1.2. CPU Exits

A CPU can exit (return from its step / run function) due to a number of reasons.

• Normal exit (step or cycle counter reach its target time)

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 18 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

• Transition to halted mode

• Breakpoint / watchpoint hit

• Early exit (other reason which can be forced by event handlers or others)

6.1.3. Stepping

When a CPU is stepping (e.g. calling its step function), it will execute a fixed number of instructions. When
a CPU enters idle mode, a step is seen as advancing to the next event. Except for the event advancement
in idle mode, a step can be seen as executing a single instruction. Stepping is not normally done in a
simulator, but is often done while debugging software. When the core is in error mode, a step will not
advance time however.

6.1.4. Running

When a CPU is running, it is set to run UINT64_MAX steps, and a special end-run-event is posted at
the target cycle time. When this end-run event is triggered, the core will stop executing after any stacked
events have finished executing.

6.2. Event System
A processor is the primary keeper of time in the emulator. The processor keeps track of the progress of
time, by maintaining a cycle counter.

Some device models need to be able to post timed events on the CPUs event queue to simulate items such
as DMA and bus message timing.

There is a standard interface for event posting that the CPU models implement. All CPUs implement
stackPostEvent(), postDeltaEvent() and postAbsoluteEvent() as part of the CPUs
EventIface struct. Delta- and absolute events are fired at the expiration time, while stack posted events
goes on a special event stack. The event will then be triggered after the current instruction has finished
executing.

Events are tracked by function-object pairs, meaning that each object (e.g. an UART instance may have
the same function posted as an event), however a single object should not post the same function multiple
times while the event is still in-flight.

6.3. Multi-Core Emulation and Events
Multi-core processors are simulated by creating a machine object, and adding multiple CPU cores to it.

Multi-core processors are emulated by scheduling each core for a number of cycles on a single CPU
(this window is called a CPU scheduling quanta). This method guarantees full determinism even when
emulating multi-core processors. The quanta length can be configured as low as a single cycle for the
fastest processor, but this has a significant performance impact. The best value need to be experimentally
determined for the relevant application, but something corresponding to 10 kCycles is probably a good
start. Note that too long quantas means that Inter-Processor Interrupts (IPIs) and spinlocks may have a
long response time.

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 19 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

Also, IPIs are typically raised as soon as the destination CPU is scheduled, this is either at the start of the
next quanta (i.e. later in time) in case the destination CPU already being scheduled, or at the start of the
current quanta (earlier in time) in case the destination CPU has not yet been scheduled.

Tip

Set the time quanta to 10 kCycles initially, this is a good starting point. This is also the default
value.

The quanta length is set in whole nanoseconds. The quanta property can be set in the machine state object,
and it will automatically be converted to cycles based on the individual processor’s clock frequency. Thus
it is even possible to provide different CPUs with different clock frequencies.

Important

This approach to multi-core emulation does have impact on low level multi-threaded code,
such as spin locks and lock free algorithms, where a CPU-core may have to wait excessively
long for a spin lock if the owning CPU finishes its quanta before releasing the lock. However,
it ensures that the emulation is deterministic.

Important

IPIs are delivered at the start of either the current quanta or the next depending on whether
the destination CPU has already been scheduled.

As the CPUs usually do not agree on time, the quanta length has an impact on the event system. When
posting an event, it normally goes to a single CPU. However, in some cases it is needed to have the
different cores agree on time. For these cases, the machine object allows for the posting of synchronised
events. These will ensure that the CPU scheduling window is aborted before the quanta is finished and all
processor will agree on time (within the granularity of the worst case instruction time).

Important

Synchronised events should always be posted with a firing time in at least the next CPU
scheduling quanta. Otherwise, CPUs that have finished their quantas will not be in sync.

Important

At present, when using the machine object to run a processor, it is only possible to run the
machine for a fixed whole number of quantas. This means that if you tell the machine object to
run for e.g. 1 seconds and the quanta is 0.3 seconds, the total time the CPU runs is 0.9 seconds.

7. Memory Emulation
Memory emulation in T-EMU is very flexible, the memory system uses a memory space object to carry out
address decoding. The memory space object enables the arbitrary mapping of objects to different address
ranges. The emulator will handle the address decoding, which is done very efficiently through a multi-
level page table.

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 20 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

7.1. Memory Spaces
T-EMU provides dynamic memory mapping. Memory mapping is done using the MemorySpace class. A
CPU needs one memory space object connected to it. The memory space object does not contain actual
memory, but rather it contains a memory map. It is possible to map in objects such as RAM, ROM and
device models in a memory space.

The requirement is that the object being mapped implements the MemAccess interface. It can optionally
implement the Memory interface as well (in which case the mapped object will support block accesses).

The memory space mapping, currently implements a 36 bit physical memory map (which corresponds to
the SPARCv8 architecture definition). It does this by defining a two level page table (with 12 bits per level).
Because it would be inefficient to access through this structure and to build up the memory transaction
objects for the memory access interface for every memory access (including fetches), the translations are
cached in an Address Translation Cache. The ATC maps virtual to host address for RAM and ROM only.
Note that there are three ATCs: one each for read, write and execute operations.

Memory may have attributes set in some cases (such as for example breakpoints, watchpoints and SEU
bits). If memory attributes are set on a page, that page cannot be put into the ATC.

To map an object in memory, there are two alternatives, one is to use the command line interface command
memory-map. The other is to use the function temu_mapMemorySpace().

7.2. Address Translation Cache
In order to get high performance of the emulation for systems with a paged memory management unit
(MMU), the emulator caches virtual to physical to host address translations on a per page level. The lookup
in the cache is very fast, but includes a two instruction hash followed by a tag check for every memory
access (including instruction fetches).

In the case of an Address Translation Cache (ATC) miss, the emulator will call the memory space object’s
memory access interface which will forward the access to the relevant device model.

Only RAM and ROM is cached in the ATC, and only if the relevant page does not contain any memory
attributes (breakpoints, SEU, MEU etc).

It is possible for models or simulators to purge the ATC in a processor if needed. The means to do this is
provided in the CPU interface. Example is given below.

// Purge 100 pages in the ATC starting with address 0
Device->Cpu.Iface->invalidateAtc(Device->Cpu.Obj, 0, 100, 0);

Note that in normal cases, models do not need to purge the ATC and it can safely be ignored, it is mostly
needed by MMU models (that cannot be modelled by the user at present).

8. Checkpointing
As constructing the object graph can be quite complex, it is useful to do this once using the command line
interface. The object graph can then be serialised to a JSON file. This is done using the checkpoint-
save and checkpoint-restore commands (these have aliases save and restore).

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 21 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

A checkpoint normally consist of the JSON file containing the object graph and property values, and
separate binary blobs containing ROM and RAM contents.

The JSON checkpoints are human readable, so, simple editing can be done on them by hand using a text
editor.

8.1. JSON Caveats

8.1.1. 64-Bit Values

JSON does not allow for larger than 53 bit integers to be stored (as JavaScript uses doubles for storing
integer values). In case a JSON file is edited, pay attention that when data of type uint64_t is serialised, it
is split into two separate 32 bit values, thus the arrays storing the values will contain twice the elements
that are actually in the object’s property.

8.1.2. ROM and RAM Contents

Another issue is that JSON is not practical for storing RAM and ROM dumps which are needed if saving
and restoring a checkpoint not at time 0. Thus ROM and RAM is stored in a binary dump (which is host
endian dependent) and the JSON file with the saved system configuration contain references to these RAM
and ROM dump files.

9. Examples

9.1. Quick CPU Construction Using JSON Files
It is possible to quickly instantiate a system configuration including CPUs, memory and peripherals, this
can be done by loading a JSON file with the serialised state of an existing system.

The JSON files are easy to understand, and can be edited by hand if needed (e.g. to change memory sizes).

Several examples of already defined JSON files are available in: /opt/temu/share/temu/
sysconfig/.

9.1.1. CLI

To load a system configuration in the current directory from the CLI.

checkpoint-restore Leon2.json

9.1.2. API

To restore a JSON file from the API, call the temu_deserialiseJSON function with the file name as
argument. The function returns non-zero on failure.

temu_deserialiseJSON("Leon2.json");

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 22 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

9.2. Command Line CPU Construction
Command line script for constructing a LEON2 CPU with on-chip devices. Note that constructing your
own machine configuration from scratch is not trivial. Several CLI scripts are provided with the emulator
and installed in /opt/temu/share/temu/sysconfig/

import Leon2
import Leon2SoC
import Memory
import Console

object-create class=Leon2 name=cpu0
object-create class=Leon2SoC name=leon2soc0
object-create class=MemorySpace name=mem0
object-create class=Rom name=rom0
object-create class=Ram name=ram0

Console is a virtual serial port sink that prints output to STDOUT
object-create class=Console name=tty0

object-prop-write prop=rom0.size val=8192
object-prop-write prop=ram0.size val=8192

Map in RAM and SOCs at the relvant address
memory-map memspace=mem0 addr=0x00000000 length=0x80000 object=rom0
memory-map memspace=mem0 addr=0x40000000 length=0x80000 object=ram0
memory-map memspace=mem0 addr=0x80000000 length=0x100 object=leon2soc0

connect a=cpu0.memAccess b=mem0:MemAccessIface
connect a=cpu0.memory b=mem0:MemoryIface
connect a=mem0.invalidaccess b=cpu0:InvalidMemAccessIface

We only use the Leon2 SoC for the IRQ controller interface
the interface is required by the CPU

connect a=leon2soc0.irqControl b=cpu0:IrqIface
connect a=cpu0.irqClient b=leon2soc0:IrqClientIface
connect a=leon2soc0.queue b=cpu0:EventIface
connect a=cpu0.devices b=leon2soc0:DeviceIface

connect a=tty0.serial b=leon2soc0:UartAIface
connect a=tty0.queue b=cpu0:EventIface

objsys-check-sanity

Load binary (supports ELF files as well)
load obj=cpu0 file=myobsw.srec
set-reg cpu=cpu0 reg="%fp" value=0x40050000
set-reg cpu=cpu0 reg="%sp" value=0x40050000

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 23 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

run cpu=cpu0 pc=0x40000000 steps=1000000000 perf=1

Note that there are several of these configuration files available for different machine configurations.

9.3. Programmatic CPU Construction
To construct a CPU using the API, the following code sequence illustrates how. It is straight forward to
translate the CLI construction (see previous section) to the C-API if needed.

#include "temu-c/Support/Init.h"
#include "temu-c/Support/Objsys.h"
#include "temu-c/Memory/Memory.h"
#include "temu-c/Target/Cpu.h"

#include <stdio.h>

int
main(int argc, const char *argv[argc])
{

 temu_initSupportLibrary();

 temu_loadPlugin("libTEMULeon2.so");
 temu_loadPlugin("libTEMULeon2SoC.so");
 temu_loadPlugin("libTEMUMemory.so");
 temu_loadPlugin("libTEMUConsole.so");

 void *Cpu = temu_createObject("Leon2", "cpu0");
 void *L2SoC = temu_createObject("Leon2SoC", "leon2soc0");
 void *MemSpace = temu_createObject("MemorySpace", "mem0");
 void *Rom = temu_createObject("Rom", "rom0");
 void *Ram = temu_createObject("Ram", "ram0");
 void *Console = temu_createObject("Console", "tty0");

 // Allocate space for ROM and RAM
 temu_propWriteU64(Rom, "size", 0x80000, 0);
 temu_propWriteU64(Ram, "size", 0x80000, 0);

 // Map in ROM, RAM and the IO modules in the memory space
 temu_mapMemorySpace(MemSpace, 0x00000000, 0x80000, Rom);
 temu_mapMemorySpace(MemSpace, 0x40000000, 0x80000, Ram);
 temu_mapMemorySpace(MemSpace, 0x80000000, 0x100, L2SoC);

 // For the L2 (without MMU) we connect memAccess directly to the
 // memspace, for MMU systems, we will need to connect memAccessL2
 // instead
 temu_connect(Cpu, "memAccess", MemSpace, "MemAccessIface");
 temu_connect(Cpu, "memory", MemSpace, "MemoryIface");
 temu_connect(MemSpace, "invalidaccess", Cpu,

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 24 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

 "InvalidMemAccessIface");

 temu_connect(L2SoC, "irqControl", Cpu, "IrqIface");
 temu_connect(Cpu, "irqClient", L2SoC, "IrqClientIface");
 temu_connect(L2SoC, "queue", Cpu, "EventIface");

 // Add Device to CPU device array, this is used to distribute
 // CPU resets to device models.
 temu_connect(Cpu, "devices", L2SoC, "DeviceIface");

 // The console implements the serial interface and simply
 // redirects it to stdout.
 temu_connect(Console, "serial", L2SoC, "UartAIface");
 temu_connect(Console, "queue", Cpu, "EventIface");

 // Check sanity of the object graph, pass non-zero to enable
 // automatic printouts (with info on which objects are not
 // sane). 0 means the function is silent, and we only care
 // about the result.
 if (temu_checkSanity(0)) {
 fprintf(stderr, "Sanity check failed\n");
 }

 // Can pass CPU or MemorySpace, which you pass doesn't matter
 // loadImage handles both SREC and ELF files.
 temu_loadImage(Cpu, "myobsw.srec")

 // To get the CPU interface to run the CPU directly, we query
 // for the interface. The CpuIface implements the basic CPU
 // control functionality like RESET
 temu_CpuIface *CpuIf = temu_getInterface(Cpu, "CpuIface", 0);

 CpuIf->reset(Cpu, 0); // Cold-reset, 1 is a warm reset
 CpuIf->setPc(Cpu, 0x40000000); // Starting location

 // Fake low level boot software setting up the stack pointers
 CpuIf->setGpr(Cpu, 24+6, 0x40050000); // %i6 or %fp
 CpuIf->setGpr(Cpu, 8+6, 0x40050000); // %o6 or %sp

 // You can step or run the CPU. Running runs for N cycles
 // while stepping executes the given number of instructions
 // as an instruction can take longer than a cycle, these are
 // not the same. For multi-core systems, you will not run or
 // step the CPU but rather a machine object, which will ensure
 // that all of the CPUs advance as requested. Also a CPU in
 // idle or powerdown mode does not advance any steps, but only
 // cycles.
 CpuIf->run(Cpu, 1000000); // Run 1 M cycles
 CpuIf->step(Cpu, 1000000); // Step 1 M steps

T-EMU: User Manual
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/SUM, Rev: 1.0

PUBLIC

Page 25 of 25

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

 CpuIf->runUntil(Cpu, 1000000); // Run until absolute time is
 // 1000000 cycles

 // Step 10 instructions, but return early if until absolute time
 // reaches 1000000 cycles
 CpuIf->stepUntil(Cpu, 10, 1000000);
 return 0;
}

