Class: TN PUBLIC

Doc. no: TERMA/SPD/63/T-EMU/ @
GENERAL/MODGUIDE
Rev: 1.0

Date: 2015-07-27
Approved by: Michela Alberti

T-EMU: Device Modelling Guide

(Demy

Prepared Checked

Mattias Holm Dan Sgren Nielsen
Technical Manager QA Manager
Approved

Michela Alberti
General Manager

© Terma GmbH, Germany, 2015. Proprietary and intellectua rights of Terma GmbH, Germany are involved in the subject-matter of this material and all manufacturing, reproduction,
use, disclosure and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by
accepting this material agrees that this material will not be used, copied or reproduced in whole or in part, nor its content (or any part thereof) revealed in any manner or to any third
party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

Page 1 of 20

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 2 of 20
Record of Changes
Author Description Rev Date
Mattias Holm Initial Version 1.0 2015-07-27
Table of Contents
I 1 Lo [FTox 1 o o PSR UUPRRPTRN 2
1.1. Coding CONVENLIONScccuiiiiiiiiee e et e e e e e e s e e e e e e e e s e st e e e e e e e s s e santbeeeeeeeeessnnnennnees 3
2. The T-EMU ODJECE SYSIEIMeeiiiiiiiiiiee ettt e et e e e ena e e s anbe e e e e nnnees 3
b T Vo g Y=o 7= g T o TSR 4
2.2, Classes aNd PrOPEITIESeeiiieeiiiccciieiee ettt e e e e et e e e e e s e st ae e e e e e e e e s e nataraaereaaeeas 4
2.3. Interfaces and INterface REFEIENCESeviiiiiiiiieee e 6
2.4, The ODJECE GIaPNvveiiiei ettt e e e e e e e e e e s s s et e e e e e e e e e s s ssntereeeeaeeeeananes 7
3. SIMPIE OPEFBLIONSoeeeiiiitiiee ittt e e e e e e e e e e e s s et e e e e e e e e sasasabaaeeeeaeeassanstbsneeeaaesaaanns 7
3.1. Memory Mapped 1/O and REJISIESuviiiieii i e e 7
3.2. Device Resats and MapPiNGS ...veeeeieeeiiiiiiieee e e e et e e e e s st e e e e e s e et e e e e e e e s e annneees 9
3.3. POSting TimMEA EVENLSoviiiiiiei ittt e e e e e e et e e e e e e e s s e e e eaaeas 9
I o = TS T o 11 (= € (0o (=P S 11
3.5. Accessing MemOry CONENESccoiiiiiiiiiiee et e e e e s rr e e e e e s r e e e e e e e e sanannes 12
4, COMPIEX OPEFBLIONS ...eiiiieiiieiiiiieee s sabr e e e e eaeeeesaaastrtaeeeeaeeessanstreneeaeens 12
4.1, Custom ChECKPOINTING ..vvvviieeeiiiiiiieiee e e e e e e e e s s e e e e e s s et e e e e e e e s s e snnnraaeeeaaeeas 12
4.2. DMA ACCESS EMUIBLIONeeviiiiiiiiie ettt st e st e e s nnee s 13
G T = 10}V @ o= (=P 14
4.4, Using and Implementing BUS MOGEISoveiiiiiiiiiiiee e 14
5. A Simple Model EXAMPIE ... 16
6. IMPOItANt INEEITACES ...oiiie i e e e e s e e e e e s e s anaarrreeeeaeeas 19

1. Introduction

This document provides an overview of how to write models in T-EMU. Device modelsin T-EMU are
plugins, which can be written in C or C++ (using the C API).

To write amodd, it isimportant to understand the T-EMU object system. The object system provides a
way to register a classes, properties and interfaces, and away to instantiate classes to objects.

For users of the System-C, SMP2 or other simulation modelling frameworks, you will find that there are
likely several similarities in the T-EMU object system to these standards and framework. However, the
emulator isintended to work with any external modelling standard and with any language, and the emulator
therefor providesitsown C level API. It iseasy to integrate external modelling standards and frameworks
using the external class featurein T-EMU.

The T-EMU object system is driven by the use of interfaces and interface references (see Section 2.3,
“Interfaces and Interface References’).

A very important interface for device models is the MemAccessl f ace. This Interface is the interface
between theemulator core and the memory system. Theinterface providesastandardised way toimplement
read, write and fetch handlers for different memory mapped devices.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 3 of 20

The most important interfaces are listed in Section 6, “Important I nterfaces”

1.1. Coding Conventions

T-EMU provides aset of headersthat define the API. These headersarelocated inthei ncl ude/ t enu-
c/ directory that can befound intheinstallation directory (normally / opt / t enu/ X. y. z/). Theheaders
provide a C-API for maximum compatibility (headers are C++ compatible). The headers follow anumber
of coding conventions.

e The namespace for T-EMU ist erru, and public functions, types and macros are prefixed witht enmu_
or TEMJ .

» Enum members are prefixed witht eXYZ_ where XY Z is a per enum type abbreviation.

* Interface types (structs containing function pointers) are suffixed with Iface, this suffix is assumed by
some macros, so custom interfaces should follow the same suffix rule.

« Interfacereference types are suffixed with IfaceRef. Thisis assumed by some macros, and in-fact, there
isamacro TEMJ | FACE_REFERENCE TYPE that lets you define such reference types.

Note

While the headers have a specific coding style, the only rule that the user have to consider
is that custom interfaces must be suffixed with | f ace and interface reference types with
| f aceRef , athough the latter is automatic if the macro is used.

2. The T-EMU Object System

Object System Glossary

class A description of a POD type with properties, interfaces and a name. Realised as a
registered struct type.
property A variable in aPOD type, associated with an count (e.g. 1 for scalars, > 1 for arrays),

an offset, a type and a name. A property can also have a set of accessor functions
registered which enables the association of semantics with a property write or read.

interface A record of function pointer that is associated with aclass. The function pointerstake
as first argument a pointer to the object.

object Aninstance of aclass.

As mentioned, T-EMU device models are written using the object system. This entail a certain amount of
boiler plate code that must be written to register a class in the object system. This boiler plateis typically
written in afunction with the signatureext ern "C" voi d tenu_pl ugi nlnit(void) (orusing
the macro TEMU_PLUGIN_INIT). Thisfunction is called when a T-EMU device plugin model isloaded
by the object system. Normally, each plugin provides only one device class, but thereis nothing preventing
aplugin from registering multiple device model classes if needed.

Interfaces are one of the key concepts in the T-EMU object system. They provide a way to have
standardised functionality associated multiple classes. For example, the I rqCtrl | f ace provides a
standard way to raise and lower interrupts. An object implementing interrupt control can usethisto provide

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 4 of 20

the functionality in a uniform way. Typical uses of that particular interface are processor models and
external interrupt controllers.

2.1. Plugin Mechanism

T-EMU is structured around plugins. Plugins are dynamically loaded code libraries that at load time
registers any classes that the plugin provides. Plugins can use the TEMU_PLUGIN_INIT macro to
define a function that will be caled at plugin load time. Loading a plugin can be done using the
t emu_| oadPl ugi n() function or in the command line interface using the i nport command. The
t emu_| oadPl ugi n() function use the normal system paths (i.e. RPATH, LD_LIBRARY_PATH,
RUNPATH, and system loader paths), while the command line interface has an additional plugin path
variable that can be controlled using the pl ugi n- append- pat h, pl ugi n-r enove- pat h and
pl ugi n- show pat hs commands.

To add the plugin initialiser function to your file add the following code to your device model plugin:
Plugin Initialisation Function.

#i ncl ude "tenu-c/ Support/ bj sys. h"

TEMJ PLUG N_INIT

{
temu_Class *Cls = tenu_registerd ass(...);
/...

}

The plugin does not have to link to the emulator library since the plugin is loaded by the library. The
system linker will resolve any references from the plugin to functions in the emulator libraries.

2.2. Classes and Properties

A classdescriptionin T-EMU isaregistration of a POD-type in the object system, where the fields of the
type are also registered as properties. An instance of aclassis known as an object.

There aretwo types of classes, internal and external classes. Internal classes are classeswritten directly for
T-EMU, the internal classes are typically associated with properties. All the object system functionality
will work on internal classes. When an internal classisinstantiated this is done using the object system’s
functions for creating objects.

External classesare classesthat do not use the object system for creation and disposal, but need to integrate
with the object system in some ways such as for example expose interfaces to the object system. External
classes exists to support the integration of existing device models, by for example wrapping their MMIO
handling functionality using the T-EMU MenmAccessl f ace.

2.2.1. Internal Classes and Instantiation

As mentioned, internal classes are managed by the T-EMU object system. The classes are created by
registering a name together with a create and dispose function. These functions are used to allocate and
delete memory of objects of the relevant class. Inthe most basic implementation the create function ssmply
returns ablock of data allocated with mal | oc() or new, and the dispose function pass the object to the
counterpart (f r ee() and del et e respectively).

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 5 of 20

7 Note

All internal classes must inherit temu_Object. Thisis accomplished by ensuring that the first
field in the struct corresponding to the classist emu_Obj ect Super ;.

The following snippet shows how to register anew interna class:
Registering an Internal Class.

t ypedef struct {
temu_Obj ect Super; // Must be first field in struct
...

} MyDevi ce;

/'l Register new internal class

temu_Cl ass*

temu_regi sterd ass(const char *C sNane,
temu_Qbj ect Creat eFunc Create,
temu_Obj ect Di sposeFunc Di spose);

/1l Creating objects of internal classes
voi d* tenmu_createCbj ect (const char *C sNane, const char *Cbj Nane,
const tenu_CreateArg *Args);

2.2.2. External Classes and Object Registration

External classes are managed outside T-EMU, they therefor only have a class name and associated
interfaces (and possibly also properties). Creation and destruction of external objects is done outside the
T-EMU runtime, as such, objects of externa types, must be registered manually with the T-EMU runtime,
while at the same time specifying which class the object belong to.

Registering an External Class.

termu_Cl ass* temu_registerExternal G ass(const char *C sNane);

// Use this to add an interface to any cl ass
voi d
termu_addl nterface(

temu_C ass *C s,

/1 Name of interface (used in connect calls)
const char *I|faceNane,

/1l Type of interface (reserved),

/! should be sane as C-type nane m nus namespace prefixes
const char *I1faceType,

void *Iface, // Pointer to interface

int Count, // Reserved for future use (should be 1)

const char *Doc) // Docunentation string for interface

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 6 of 20

/1 To add objects of external class use the addObject function
voi d* tenmu_addObj ect (const char *C sNane,

const char *Cbj Nane,

void *Qbj);

2.3. Interfaces and Interface References

Aninterface isacollection of function pointers, normally stored in astruct. These interface types are used
to allow for model compatibility with different subsystems. An interface is registered to a class at class
creation time. The first parameter of each function in an interface should by convention take an object
pointer (i.e. a self or this pointer of type void*), as the object system API is expressed in C, the sdlf/this
pointer must be passed explicitly.

Interface references however are properties that refer to an object and interface pair, that is the interface
reference bundle the self/this pointer together with the interface pointer. Thisis realised as a struct with
two pointers (object and interface pointer, the fields are named Qbj and | f ace respectively). The object
system header (t enmu- ¢/ Support/ Qbj sys. h) provides a macro to define a typed version of the
interface reference struct. This macro is named TEMU_IFACE_REFERENCE_TYPE and will simply
define a struct with the suffix | f aceRef . Note that the interface type (i.e. the struct with the function
pointers) must have a suffix Iface for this macro to work.

Thereis also an untyped interface reference type with the namet enu_ | f aceRef .

7 Note

Interface references are central to understand in order to be able to work with the object graph
provided by the object system.

The emulator provides afunction with thenamet emu_connect () , thisfunction can be used to connect
aninterfacereferencein aspecific object to an object and an interfaceimplemented the latter object’ sclass.

The following code snippet illustrate how to connect objects using the T-EMU API.
Connecting Objects.

/1l Equivalent to CLI: connect a=obja.propNane b=obj b: Sonel f ace
temu_connect (Cbj A, "propNanme”, ObjB, "Sonelface");

Thefirst parameter tot emu_connect () isanobject pointer, the second parameter isthe property name
(which must be either an interface reference property or an interface reference array property). Third isthe
destination object pointer, and fourth is the interface name for the destination object. Note that it is legal
to connect an a property to an interface implemented by the object itself, to do this, pass the same pointer
to the source and destination object arguments.

The connection function essentially fillsthe named property with apointer for the destination object and the
pointer for theinterface struct, which islooked up by name. To call some function in the connected object
one simply call the function in the interface, passing the object pointer as first parameter asillustrated in
the following snippet:

Calling a Function in an Interface.

bj A- >Pr opNane. | f ace- >sonmeFunc(Obj A- >Pr opNane. Qbj) ;

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

Doc. no: TERMA/SPD/63/T-EMU/

GENERAL/MODGUIDE, Rev: 1.0

T-EMU: Device Modelling Guide PUBLIC @

Page 7 of 20

It is possible to connect interface reference properties in two ways. In the first case the property is of type
teTY_ | f aceRef, inthat case the connection is done by looking for the first free entry in the property
field. In case all entriesin the property is already connected, the connection operation fails.

The second case is when the typeist eTY | f aceRef Arr ay, which is a dynamic array of interface
references. This connection will always succeed assuming the destination object and interface are valid
(and unless the system runs out of memory).

Note

Temu_connect() returns non-zero on failure (i.e. invalid property name, invaid interface
name, invalid object pointers).

Note

Connecting an interface reference property which is a static array will place the interface
reference in the first free array entry (i.e. where the object and interface pointer pair are both
NULL).

2.4. The Object Graph

The object system provides a registry of objects. The objects are connected to each other using interface
references. This object connectivity isknown asthe object graph. Asmentioned in Section 2.3, “Interfaces
and Interface References’, the objects are connected using thet enu_connect () function.

3. Simple Operations

This section describes how to accomplish the most common tasks when writing models for T-EMU.

3.1. Memory Mapped I/O and Registers

The primary ways to get an MMIO transaction is to implement the MemAccessI f ace in your model.
The MemAccessl f ace hasthree functions (fetch, read and write). As arguments the functions take the
object (device model pointer) and a Menilr ansact i on object. The transaction object is important to
fully understand.

By implementing the MemAccessl f ace the device model becomes compatible with the memory
mapping functions.

The following snippet illustrates how to add support for the memory access interface:

#i ncl ude "temnu-c/ Support/ bj sys. h"
#i ncl ude "tenu-c/ Menory/ Menory. h"

voi d readFunc(void *Obj, temu_Memlransaction *M);
void witeFunc(void *Cbj, tenmu_Menilransaction *M);

temu_MenAccessl face MenmAccesslface = {

NULL,

/1l fetchFunc is optional (only used for RAM and ROM nodel s)

r eadFunc,

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 8 of 20

writ eFunc,

¥

TEMJ PLUG N INIT

{
temu_Class *Cs = tenu_registerd ass("MC ass", create, dispose);
temu_addl nterface(C s, "MenAccesslface", "MemAccessl face",

&\vemAccessl face) ;
}

The memory transaction object hasan | ni ti at or pointer, if the model needsto call functionsthat exits
the emulator core directly (vialongjump, therelevant functionsin the CPU interface are tagged as noreturn
functions), this should ONLY be doneif thereisan initiator object specified. Without an initiator object,
the transaction is initiated from elsewhere (e.g. from a manual MMU table walk).

@ Caution
MODELS SHOULD NOT USE FUNCTIONS THAT LONGJMP TO THE EMULATOR
CORE IF THERE ISNO INITIATOR OBJECT.

An object implementing the MemA ccessl face can be mapped into amemory space. Normally the memory-
mapped 1/0 model will provide a set of registers. There is no special register type, but most registers are
implemented as properties, where the read and write functions act asregister read and writes. It isnecessary
for the device model to provide functions implementing the MemAccessl f ace that dispatch reads and
writes to the correct functions.

Thenormal way to do thedispatchingisviaaswitchonthe O f set fieldinthe memory transaction object.
Memory Mapped 1/O Interface Usage.

#i ncl ude "tenu-c/ Menory/ Menory. h"

voi d
readFunc(void *Qoj, termu_Meniransacti on * M)
{

switch (M->Ofset) {

case O:

/1 Unwrap property
M - >Val ue = teru_propVal ueU32(readRegA(vj, 0));

br eak;
case 4:
M - >Val ue = tenu_propVal ueU32(readRegB(oj, 0));
br eak;
}
M->Cycles = 0; // Cost for this nmenory transaction in cycles

) Note

Registers are propertiesin the structure which have read and write handlersimplementing the
semantics. The properties can be written to from the APl and the command line interface.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 9 of 20

Thisway unit testing of device modelsis very simple since device models can be stimulated
without writing custom code for the target processor.

3.2. Device Resets and Mappings

The Devicelface can be implemented by a device model for handling resets and mapping of devices to
memory (adevice should normally not need to know whereit is mapped, but it may be used for automatic
update of plug-and-play info that needs to reflect the MMIO address mappings).

The Devicelface must be implemented in case the device must support resets. The reset function takes an
int as parameter, specifying thereset type. By convention, 0 meansacold reset, while 1 meansawarm reset.

#i ncl ude "temnu-c/ Model s/ Devi ce. h"

static void
reset(void *Cbj, int ResetType)
{
if (!ResetType) {
/1 Cold reset

}
...

}

static void
mapDevi ce(void *Obj, uint64 t Address, uint64_t Len)

{
temu_| ogl nfo(Cbj, "device was mapped at %0.8x", (uint32_t)Address);
}
tenmu_Devi cel face Devicelface = {
reset,
mapDevi ce,
1
TEMJ_PLUG N_INIT
{

tenmu_Cass *Cls = ...
/1l To register device interface call the following in the plugin:
/1l init function:
tenmu_addl nterface(C s, "Devicelface", "Devicelface", &Devicelface,
1, NULL);
}

3.3. Posting Timed Events

A device moddl that need to post timed events need to have an event queue object associated to itself.
The event queue is provided by the CPU objects. That means that there are one event queue per CPU. For
the cases where an event must be invoked at a synchronised time stamp (i.e. all CPUs having reached a

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 10 of 20

specific time), then events can be posted as synchronised events by adding the TEMU_EVENT _NSflag
to the flags parameter.

A posted event consist of afunction pointer, a sender and an optional generic pointer that can be used to
pass along any type of data. They are identified by the function and sender pair. A device model cannot
post an event that is already inflight (i.e already enqueued). Of-course, the same function may be posted
multiple times at the same time as long as the events have different sender objects.

In order to support serialisation of the event queues, events need to be registered. Registration istypically
done in a custom write handler for the interface reference connecting to the event queue.

There are three types of events:

» Stacked events (highest priority)
» Synchronised events

* Normal events

Stacked events will be executed after the current instruction terminates (they can be posted by other event
handlers as well). Synchronised events will stop the CPU when reached and defer execution of the CPU
until all CPUs have reached the synchronised event at which point the event function will be called.

Normal events are executed on a single CPU only, thus normal events will not naturally be well ordered
intimeif they are posted on different CPU event queues.

Note that stacked events have the highest priority and will be executed before al other types of events.
Normal and synchronised events are sorted by the timestamp (equal timestamps, means that the last posted
will be executed first).

Posting of eventsis done by connecting your device model with the event interface provided by the CPU.
The use of thisinterface isillustrated in the following snippet:

/! Header for event interface
#i ncl ude "tenu-c/ Support/Event. h"

/1l Stack event (will be invoked after this instruction

/1 (or event) is handl ed)

Dev->Queue. | f ace- >st ackPost Event (Dev- >Queue. Obj , nyEvent Fn, Dev,
NULL, 0);

/] Post an event 123 cycles in the future
Dev->Queue. | f ace- >post Del t aEvent (Dev- >Queue. Obj , nyEvent Fn, Dev,
NULL, 123, 0);

/1l Post a synchroni sed event at absolute time 123 ns, tinme is

/] relative since the start

Dev- >Queue. | f ace- >post Absol ut eEvent (Dev- >Queue. Gbj, myEvent Fn, Dev,
NULL, 123,
TEMJ_EVENT_NS| TEMJ_EVENT_SYNC) ;

/[l Cet delta tine (useful in tinmer nodels)

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 11 of 20

Dev- >Queue. | f ace- >get Event Del t aTi ne(Dev- >Queue. Gbj, nyEvent Fn, Dev);

/1l Get absolute tinme (in cycles) for event
Dev- >Queue. | f ace- >get Event Absol ut eTi ne(Dev- >Queue. Obj, nyEvent Fn, Dev);

/1 Deschedul e event identified by function and sender pair
Dev- >Queue. | f ace- >deschedul eEvent (Dev- >Queue. Obj, nyEvent Fn, Dev);

/1l The property wite function which is responsible for connecting to
/'l the queue object can inplenent the event registration
/1 functionality.
voi d
writeQueue(void *Obj, temu_Propval PV, int |dx)
{
MyDevi ce *Dev = bj;

/'l Register event nust be done to support serialisation of event queues
Dev->Queue = tenu_propVal uel f aceRef (PV);
Dev- >Queue. | f ace- >r egi st er Event (Dev- >Queue. Ovj, "nyEvent", nyEventFn, 0);

}
3.4. Raising Interrupts

It is common that device models need to raise an interrupt. For this purpose there are two interfaces to
consider. The IrqCtrlIface which isused to raise and / or lower interrupts. The IrqCtrlifaceisimplemented
by processor models and interrupt controllers.

There is also IrgClientlface which is implemented by interrupt controllers so they support lasy interrupt
evaluation. A device model will normally only need to bother about the IrqCtrliface.

/1l Header for interface
#i ncl ude "teru-c/ Mddel s/1rqController.h"

/! Raise IRQ 1
Qoj->lrqCrl.lface->raiselnterrupt (oj->lrqCrl.Cbj, 1);

/!l Lower ITRQ 1
Qoj->lrqCrl.lface->lowerlnterrupt (Goj->lrqCrl.Cbj, 1);

In most cases, a device model should be connected to an interrupt controller and not directly to the CPU.

When amulti-core system is emulated, an interrupt controller may need to distribute interruptsto different
processors. There are the following alternatives for this:

* Aninterrupt is sent to the same CPU who initiated the interrupt (e.g. by MMIO or event execution).

* Aninterrupt is sent to another CPU than the oneinitiating the interrupt (e.g. an Inter-Processor Interrupt

(IP1)).

« Aninterrupt is sent to several CPUs (multi- or broadcast interrupt).

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 12 of 20

In the case an IRQ is raised on the initating CPU (or from a synchronised event) then the IRQ will be
taken in natural order.

In the case the interrupt is raised on another CPU, then the IRQ raising time will be at the start of the
current quanta or at the start of the next quanta. That is, the IRQ may be raised earlier in apparent time
for the other CPU.

3.5. Accessing Memory Contents

Some devices may need to access memory content in memory models, this can be done using the
Memorylface interface. The interface provides functions to read and write byte blocks from emulated
memory. Theinterfaceisimplemented by memory spaces, but would typically also be provided by memory
models, CPU models and IOMMU models.

By convention, amemory space handles physical address offsets, while a CPU model would handle virtual
addresses in this interface. It is only allowed to do memory content access in one device at atime. That
isif one attempts to read or write a block which will span multiple device mappings (e.g. end of ROM
followed by start of RAM), then the memory access will fail.

Memory content isaccessed using the Menor y| f ace. Note that the model should normally be connected
to the memory space for this. Although, some systems that contain an IOMMU would connect the device
models directly to the IOMMU model instead.

/1 Witing 128 bytes, data is given as an array of 32-bit words
Dev->Mem | f ace->w i t eByt es(Dev->Mem Gbj, 0x40000000, 128,
&Dbat a[0], 2);

/]l Reading data, out data will be an array of 32-bit words
Dev->Mem | f ace- >r eadByt es(Dev- >Mem Obj, &Dat a[0], 0x40000000, 128, 2);

4. Complex Operations
4.1. Custom Checkpointing

Whilein most cases, checkpoint-support isautomatic for device model simply by registering the properties
with the class. In some cases it may make sense to implement custom checkpoints. To implement a
custom checkpoint aclass must implement the bj ect | f ace (t enmu- ¢/ Support/ Qbj sys. h). This
interface is optional but allows for custom serialisation routines to be implemented.

When saving a checkpoint, the system first writes out all registered properties in an object (this process
is known as serialisation). After the property serialisation, the optional seri al i se function in the
(optional) Cbj ect | f ace iscalled.

When restoring a checkpoint, the system first creates all objects by calling the constructorsregistered for a
class, after thispropertiesarerestored, thirdly, if an object isof aclassthat implementsthedeseri al i se
function that function is called.

@ Note

When restoring a checkpoint, the object constructors are called without arguments.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 13 of 20

The checkpointing functions take two parameters, BaseName is the name of the file where the checkpoint
will bewritten, and Ctxt isacontext pointer that can be used to insert and query additional property values
in the checkpaint file.

A typica use for the BaseName parameter isin the RAM and ROM models. These, by default, dump the
raw datainto binary files which will be named by adding a suffix to BaseName.

To serialise aspecial property in the custom checkpointing interface, the following functions can be used:

/[l Wite out a property
void temu_serialiseProp(void *Ctxt, const char *Name, temu_Type Typ,
int Count, void *Data);

/1 The followi ng can be used to deserialise properties for objects.
/[l Cet length of the property in the given context (i.e. nunber of
/1 el enments)

i nt tenmu_checkpoi nt Get Lengt h(void *Ctxt, const char *Nane);

/]l Cet a value for the indexed property in the given context
termu_Propval tenu_checkpoint Get Val ue(void *Ctxt, const char *Name, int 1dx);

To implement custom serialisation the Obj ect | f ace is implemented. The following example shows
how to match the serialise and deserialise functions for saving and restoring checkpaints:

voi d
serialise(void *Obj, const char *BaseNane, void *Ctxt)
{
uint32_t Extra = 123;
temu_serialiseProp(Ctxt, "nyExtraProp", teTY U32, 1, &Extra);

}
voi d
deserialise(void *Obj, const char *BaseNane, void *Ctxt)
{
assert (temu_checkpoi nt Get Lengt h(Ct xt, "nyExtraProp") == 1);
temu_Propval PV = tenu_checkpoi nt Get Val ue(Ct xt, "nyExtraProp", 0);
}

temu_Objectlface Objlface = {
seriali se,
deseri al i se,
NULL, // checkSanity

b
4.2. DMA Access Emulation

To emulate DMA, the standard approach is as follows:

1. When DMA transaction starts, the whole data block is copied and the estimated time is computed and
an event is posted at the end of transaction time.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 14 of 20

2. When the transaction event is called, the event handler raises an interrupt.

) Note

Transferring al the data when posting the event is preferred over transferring it in the event
handler. Thisway datamay be sourced from the stack without problems, if datamust be copied
to memory at the event time, then a buffer must be allocated on the heap for this purpose.

The following example illustrates emulation of DMA transactions.
DMA Emulation Example.

voi d
drmaFi ni shed(voi d *Sender, void *Data)
{
MyDevi ce *Dev = (MyDevi ce*) Sender;
Dev->lrqCrl .| face->raiselnterrupt(Dev->lrqCrl.Qoj, 1);
}

voi d
dmaSt art (MyDevi ce *Dev)
{
uint64_t TransactionTime = MyDevi ce->DnaSi ze * NsPer Byt e;
Dev->Mem | face->w it eByt es(Dev->Mem Qbj, Dev->DnaAddr, Dev->DmaSi ze,
Dev- >Transacti onbData, 2);
Dev- >Queue. | f ace- >post Del t aEvent (Dev- >Queue. Cbj, dmaFi ni shed, Dev, NULL,
Transacti onTi me, TEMJ_EVENT_NS);

}
4.3. Proxy Objects

An interesting debugging technique is to use proxy objects where one implement an interface and simply
forwards the callsto the same interface but as provided by another class. Thisis called a proxy object, and
such an object can for example log calls or provide other interesting diagnostics.

Similar techniques can also be used to implement cache models in the emulator.

4.4. Using and Implementing Bus Models

The complexity of issuing atransaction on anon-MMIO bus depends on the type of bus. A point to point
bus (e.g. seria) may be implemented by simple interfaces in the model s where model s connect directly to
each other and do not strictly speaking need a separate bus model class.

However, multi-point linkstypically needs abus model to work, this bus-model isfor exampleresponsible
for routing messages to the correct model.

Note

Even point-to-point buses like serial could use abus model object in order to ensure that abus
client behaves appropriately (e.g. verify bandwidth usage), or to implement hardware flow-
control emulation, or to be able to inject errors.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 15 of 20

7 Note

There is no generic bus model as connecting a spacewire connector to a serial port or to a
milbus makes no sense. Thus each bus needs its own interface (and optionally a bus-model
component). This approach also ensures a degree of type-safety.

When constructing a more complex bus model, one way is to provide a connect function, and ensure that
userssimply set the bus property in the model s connecting to the bus. When this property is set, the connect
function in the bus-object is called with whichever parameters are relevant for the busin question.

Bus M odel Example.

typedef struct {
uint16_t Dest;
uint16_t *Data;

} MyTransacti on;

typedef struct {

void (*receive)(void *Qbj, MyTransaction *T)
} MyDevi cel f ace;
TEMU_| FACE_REFERENCE_TYPE(MyDevi ce) ;

typedef struct {
void (*connect)(void *Bus, uintl6_t Addr, MyDevicelfaceRef Device)
void (*send)(void *Obj, MyTransaction *T)

} MyBusl f ace;

TEMJ_| FACE_REFERENCE_TYPE(MyBus) ;

typedef struct {
MyBusl f aceRef Bus;
} MyDevi ce;

MyDevi cel face Myl facel npl = {
receive

b

/1l Connect to the bus when the bus property is witten
voi d

writeBus(void *Obj, temu_Propval PV, int |dx)

{

MyDevi ce *Dev = (bj;
Dev->Bus = tenu_propVal uel f aceRef (PV);

MyDevi cel f aceRef Devlface = {
Dev, Ml facel npl;
b

Dev- >Bus. | f ace- >connect (Dev- >Bus. Cbj, 123, Devlface);

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 16 of 20

5. A Simple Model Example

In this example we implement a model with two registers that can be accessed using the read and write
procedures in the memory access interface. We have a device which contain two registers (RegA and
RegB). These registers are mapped at offset 0 and 4 from the device base address.

Toimplement thismodel, we implement read and write functionsfor registersaand b, memory transaction
handlers which decode the offset and calls the relevant read or write handler. The read and write functions
areimportant asthey provide astandard interface for the T-EMU runtime to call register reads and writes;
thisisespecialy useful in device model tests which does not need to deal with the rather complex memory
access interface. In addition, it simplifies device debugging for the same reason when loading adevicein
the T-EMU command line interface.

The model here can be compiled with GCC or clang using:

Wth GCC
g++ -fPIC -shared nydevi ce.cpp -0 |ibMDevice. so

Wth clang:
cl ang++ -fPI C -shared nydevi ce.cpp -0 |ibMDevice. so

Note that you do not need to link to the support library (libTEMUSupport.so) as the symbols from that
library are resolved when the plugin is loaded.

The built model can be loaded form the command line with the import command.
Example Class.

#i ncl ude "tenu-c/ Support/ bj sys. h"
#i ncl ude "tenu-c/ Menory/ Menory. h"

#i ncl ude <stdint. h>

typedef struct {
termu_QObj ect Super;

uint32_t RegA;
uint32_t RegB;
} MyDevi ce;

voi d*
create(const char *Nanme, int Argc, const temu_CreateArg *Argv)

{
MyDevi ce *Device = new MyDevi ce;
menset (Devi ce, 0, sizeof (MyDevice));

return Device;

}

voi d

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 17 of 20

destroy(void *Ohj)

{
MyDevi ce *Dev = reinterpret_cast<MyDevice*>(hj);
del et e Dev;

}

voi d

writeRegA(void *Cbj, temu Propval Val, int |dx)

{

MyDevi ce *Dev = reinterpret_cast<MyDevice*>(hj);
/1l Semantics of register wite goes in here

Dev->RegA = tenmu_propVal ueU32(Vval);
}

temu_Propval

readRegA(void *Qoj, int |dx)

{
MyDevi ce *Dev = reinterpret_cast<MyDevice*>(hj);
/1l Semantics of register read goes in here

return tenmu_nakePr opU32(Dev->RegA) ;
}

voi d

writeRegB(void *Cbj, temu Propval Val, int |dx)

{
MyDevi ce *Dev = reinterpret_cast<MyDevice*>(hj);
/1 Semantics of register wite goes in here

Dev->RegB = tenmu_propVal ueU32(Vval);
}

temu_Propval

readRegB(void *Qoj, int |dx)

{
MyDevi ce *Dev = reinterpret_cast<MyDevice*>(hj);
/1l Semantics of register read goes in here

return tenmu_nakePr opU32(Dev->RegB);
}

voi d
readFunc(void *Qoj, termu_Menilransaction *M)

{
switch (M->offset) {

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 18 of 20
case O:
M ->Val ue = temu_propVal ueU32(readRegA(vj, 0));
br eak;
case 4:
M ->Val ue = temu_propVal ueU32(readRegB(oj, 0));
br eak;
}
M ->Cycl es = 0;
}
voi d
writeFunc(void *Cbj, tenmu_Menilransaction *M)
{
switch (M->offset) {
case O:
writeRegA(Obj, tenmu_makePropU32(M ->Val ue), 0);
br eak;
case 4:
writeRegB(Obj, tenmu_makePropU32(M ->Val ue), 0);
br eak;
}
M ->Cycl es = 0;
}

temu_MenmAccessl face MemAccesslface = {
NULL, // fetch
r eadFunc,
writ eFunc,

b

extern "C' void
temu_pluginlnit(void)
{

temu _Class *Cs = tenu_registerd ass("MyDevice", create, destroy);

temu_addProperty(ds, "regA', teTY U32, 1,
of f set of (MyDevi ce, RegA),
writeRegA readRegA,
"Regi ster A');

temu_addProperty(ds, "regB", teTY U32, 1,
of f set of (MyDevi ce, RegB),
writeRegB, readRegB,
"Regi ster B");

temu_addl nterface(C s, "MenAccesslface", &\VemAccessl face);

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 19 of 20
6. Important Interfaces
Memory Access | nterface.
#i ncl ude "tenu-c/ Menory/ Menory. h"
typedef struct tenu_Menilransaction {
uint64_t Va; /1< 64 bit virtual for unified 32/64 bit interface.
uint64_t Pa; /1< 64 bit physical address
uint64_t Val ue; /1< Resulting value (or witten val ue)

/1! Log size of the transaction size it is at nost the size of the
/1l CPUs max bus size. In case of SPARCv8, this is 4 bytes (double
/1! words are issued as two accesses).

uint8 t Size;

/1! Used for device nodels, this will be filled in with the offset
/1! fromthe start address of the device (note it is in practice
/1! possible to add a device at nultiple | ocations (which happens in
/1! some rare cases)).
uinted4 t O fset;
void *Initiator; //!< Initiator of the transaction
voi d *Page; /1< Page pointer (for caching)
uint64_t Cycles; //!'< Cycle cost for nmenory access
} temu_Menilransacti on;

/'l Exposed to the enul ator core by a nenory object.
typedef struct tenmu_MenmAccessl face {
void (*fetch)(void *Obj, temu_Menmlransaction *M);
void (*read)(void *Cbj, tenu_Menilransaction *M);
void (*wite)(void *Obj, temu_Menlransaction *M);
} temu_MenAccessl f ace;

IRQ Interface.

#i ncl ude "teru-c/ Mddel s/1rqgController.h"

typedef struct temu_lrqgControllerlface {
void (*raiselnterrupt)(void *Qoj, uint8_t Irq);
void (*acklnterrupt)(void *Qoj, uint8_t Irq);
} temu_lrqCrliface;

Event Interface.

#i ncl ude "tenu-c/ Support/Events. h"

typedef struct {
voi d (*stackPost Event) (void *Qbj,
void (*Ev)(void *, void *),

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

T-EMU: Device Modelling Guide PUBLIC
Doc. no: TERMA/SPD/63/T-EMU/
GENERAL/MODGUIDE, Rev: 1.0

Page 20 of 20

voi d *Sender, void *Data,
uint32_t Flags);

void (*postDeltaEvent)(void *Qoj,
void (*Ev)(void *, void *),
voi d *Sender, void *Data,
int64 t Cycles, uint32_t Flags);

voi d (*post Absol ut eEvent) (void *CObj,
void (*EBEv)(void *,
void *Sender, void *Data,
int64 t Cycles, uint32_t Flags);
int64 t (*getEventDeltaTine)(void *Cbj, void (*Ev)(void *, void *),
voi d *Sender);
int64 t (*get Event Absol uteTine)(void *Obj, void (*Ev)(void *, void *),
voi d *Sender);
voi d (*deschedul eEvent) (void *Qbj,
void (*Ev)(void *, void *),
voi d *Sender);
void (*registerEvent)(void *Obj, const char *EvNane,
void (*Ev)(void *, void *), uint32_t Flags);
} temu_Event|face;

Device | nterface.

#i ncl ude "t enu-c/ Model s/ Devi ce. h"

typedef struct tenu_Devicelface {

void (*reset)(void *Qbj, int ResetType);

void (*nmapDevice)(void *Obj, uint64_t Address, uint64_t Len);
} temu_Devi cel face;

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.
PUBLIC

